Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T16:25:26.199Z Has data issue: false hasContentIssue false

Fluctuations above a burning heterogeneous propellant

Published online by Cambridge University Press:  22 May 2007

L. MASSA
Affiliation:
Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
T. L. JACKSON
Affiliation:
Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
J. BUCKMASTER*
Affiliation:
Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
F. NAJJAR
Affiliation:
Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
*
Author to whom correspondence should be addressed: Buckmaster Research, 2014 Boudreau Drive, Urbana, IL 61801, USA, [email protected]

Abstract

A numerical description of heterogeneous propellant combustion enables us to examine the spatial and temporal fluctuations in the flow field arising from the heterogeneity. Particular focus is placed on the fluctuations in a zone intermediate between the combustion field (where reaction is important) and the chamber flow domain, for these define boundary conditions for simulations of the turbulent chamber flow. The statistics of the temperature field and the normal velocity field are described, and characteristic length scales and time scales are identified. The length scales are small compared to any relevant length scale of the chamber flow, and so the boundary conditions for this flow at any mesh point are statistically independent of those at any other mesh point. But the temporal correlations at a fixed point are significant, and affect the nature of the chamber flow in a variety of ways. We describe the fluctuations in the head-end pressure that arise because of them, and contrast these results with those calculated using a white-noise assumption.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balachandar, S., Buckmaster, J. & Short, M. 2001 The generation of axial vorticity in solid-propellant rocket-motor flows. J. Fluid Mech. 429, 283305.CrossRefGoogle Scholar
Balakrishnan, G., Linan, A. & Williams, F. A. 1991 Compressibility effects in thin channels with injection. AIAA J. 29 (12), 21492154.CrossRefGoogle Scholar
Beckstead, M. W., Derr, R. L. & Price, C. F. 1970 A model of composite solid-propellant combustion based on multiple flames. AIAA J. 8 (12), 22002207.CrossRefGoogle Scholar
Box, G. E. P. & Muller, M. E. 1958 A note on the generation of random normal deviates. Ann. Math. Statist. 29, 610611.CrossRefGoogle Scholar
Brewster, M. Q. 2000 Solid propellant combustion response: quasi steady (QSHOD) theory development and validation. In Solid Propellant Chemistry, Combustion and Motor Interior Ballistics (ed. Yang, V., Brill, T. & Ren, W.-Z.), Vol. 185, pp. 607637. AIAA.Google Scholar
Buckmaster, J., Jackson, T. L., Massa, L. & Ulrich, M. 2005 Response of a burning heterogeneous propellant to small pressure disturbances. Proc. Combust. Inst. 30, 20792086.CrossRefGoogle Scholar
Chen, M., Buckmaster, J., Jackson, T. L. & Massa, L. 2002 Homogenization issues and the combustion of heterogeneous solid propellants. Proc. Combust. Inst. 29, 29232929.CrossRefGoogle Scholar
Culick, F. C. E. 1966 Rotational axisymmetric mean flow and damping of acoustic waves in solid propellant rocket motors. AIAA J. 4, 14621464.CrossRefGoogle Scholar
Fiedler, R., Haselbacher, A., Breitenfeld, M., Alexander, P., Massa, L. & Ross, W. 2005 3-D simulations of ignition transients in the RSRM. AIAA Paper 2005-3993.CrossRefGoogle Scholar
Fiedler, R., Wasisto, B. & Brandyberry, M. 2006 Full 3-D simulation of turbulent flow in the RSRM. AIAA Paper 2006-4587.CrossRefGoogle Scholar
Flandro, G. 1986 Vortex driving mechanism in oscillatory rocket flows. J. Propul. Power 2 (3), 206214.CrossRefGoogle Scholar
Jackson, T. L. & Buckmaster, J. 2002 Heterogeneous propellant combustion. AIAA J. 40 (6), 11221130.CrossRefGoogle Scholar
Knott, G. M., Jackson, T. L. & Buckmaster, J. 2001 The random packing of heterogeneous propellants. AIAA J. 39, 678686.CrossRefGoogle Scholar
Kochevets, S., Buckmaster, J., Jackson, T. L. & Hegab, A. 2001 Random packs and their use in the modeling of heterogeneous solid propellant combustion. J. Propul. Power 17, 883891.CrossRefGoogle Scholar
Kouta, A. 1999 Computation of vortex shedding in solid rocket motors using a time-dependent turbulence model. J. Propul. Power 15 (3), 390400.Google Scholar
Landsbaum, E. 2005 Erosive burning of solid rocket propellants – a revisit. J. Propul. Power 21 (3), 470477.CrossRefGoogle Scholar
Lupoglazoff, M. & Vuillot, F. 1992 Numerical simulation of vortex shedding phenomenon in 2D test case solid rocket motors. AIAA Paper 92-0776.CrossRefGoogle Scholar
Massa, L., Jackson, T. L. & Buckmaster, J. 2005 New kinetics for a model of heterogeneous propellant combustion. J. Propul. Power 21 (5), 914924.CrossRefGoogle Scholar
Massa, L., Jackson, T. L., Buckmaster, J. & Campbell, M. 2002 Three-dimensional heterogeneous propellant combustion. Proc. Combust. Inst. 29, 29752983.CrossRefGoogle Scholar
Massa, L., Jackson, T. L. & Short, M. 2003 Numerical solution of three-dimensional heterogeneous solid propellants. Combust. Theor. Modell. 7 579602.CrossRefGoogle Scholar
Miller, R. R. 1982 Effects of particle size on reduced smoke propellant ballistics. AIAA Paper 82-1096.CrossRefGoogle Scholar
Moser, R., Rogers, M. & Ewing, D. 1998 Self-similarity of time-evolving plane wakes. J. Fluid Mech. 367, 255289.CrossRefGoogle Scholar
Proudman, I. 1962 An example of steady laminar flow at large Reynolds number. J. Fluid Mech. 9, 593–502.CrossRefGoogle Scholar
Sambamurthi, J., Price, E. & Sigman, R. 1984 Aluminum agglomeration in solid-propellant combustion. AIAA J. 22 (8), 11321138.CrossRefGoogle Scholar
Taylor, G. I. 1956 Fluid flow in regions bounded by porous surfaces. Proc. R. Soc. Lond. A 234 456475.Google Scholar
Tennekes, H. & Lumley, J. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Traianeau, J., Hervat, C. & Kuentzmann, P. 1986 Cold-flow simulation of a two-dimensional nozzleless solid rocket motor. AIAA Paper 86-1447.CrossRefGoogle Scholar
Wang, X. & Jackson, T. L. 2005 The numerical simulation of two-dimensional aluminized composite solid propellant combustion. Combust. Theor. Modell. 9, 171197.CrossRefGoogle Scholar
Wang, X., Jackson, T. L. & Buckmaster, J. 2007a Numerical simulation of the three-dimensional combustion of aluminized heterogeneous propellants. Proc. Combust. Inst. 31, in press.CrossRefGoogle Scholar
Wang, X., Jackson, T. L. & Buckmaster, J. 2007b The burning of ammonium-perchlorate ellipses and spheroids in fuel binder. J. of Propulsion Power, in press.CrossRefGoogle Scholar
Wasisto, B., Balachandar, S. & Moser, R. D. 2004 Compressible wall-injection flows in laminar, transitional, and turbulent regimes: numerical prediction. J. Spacecraft Rockets 41 (6), 915924.CrossRefGoogle Scholar
Wasisto, B. & Moser, R. D. 2005 Simulation strategy of turbulent internal flow in solid rocket motor. J. Propul. Power 21 (2) 251263.CrossRefGoogle Scholar
Zhao, Q., Staab, P., Kassoy, D. & Kirkkopru, K. 2000 Acoustically generated vorticity in an internal flow. J. Fluid Mech. 413, 247285.CrossRefGoogle Scholar