Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:24:01.471Z Has data issue: false hasContentIssue false

The flow field near the centre of a rolled-up vortex sheet

Published online by Cambridge University Press:  28 March 2006

K. W. Mangler
Affiliation:
Royal Aircraft Establishment, Farnborough
J. Weber
Affiliation:
Royal Aircraft Establishment, Farnborough

Abstract

Most of the existing methods for calculating the inviscid flow past a delta wing with leading-edge vortices are based on slender-body theory. When these vortices are represented by rolled-up vortex sheets in an otherwise irrotational flow, some of the assumptions of slender-body theory are violated near the centres of the spirals. The aim of the present report is to describe for the vortex core an alternative method in which only the assumption of a conical velocity field is made. An asymptotic solution valid near the centre of a rolled-up vortex sheet is derived for incompressible flow. Further asymptotic solutions are determined for two-dimensional flow fields with vortex sheets which vary with time in such a manner that the sheets remain similar in shape. A particular two-dimensional flow corresponds to the slender theory approximation for conical sheets.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. N. 1965 The compressible inviscid leading-edge vortex. J. Fluid Mech. 22, 17.Google Scholar
Earnshaw, P. B. 1961 An experimental investigation of the structure of a leading edge vortex. A.R.C. 22876, R & M 3281.
Germain, P. 1955 Sur 1’écoulement subsonique au voisinage de la pointe avant d'une aile delta. Rech. Aéro. no. 44.
Hall, M. G. 1961 A theory for the core of a leading-edge vortex. J. Fluid Mech. 11, 209.Google Scholar
Küchemann, D. & Weber, J. 1965 Vortex motions. ZAMM, 45, 457.Google Scholar
Legendre, R. 1952 Écoulement au voisinage de la pointe avant d'une aile à forte flèche aux incidences moyennes. 8th Int. Cong. Th. Appl. Mech., Istanbul. Rech. Aero. no. 31, 3–6, 1953.
Ludwieg, H. 1962 Zur Erklärung der Instabilität der über angestellten Deltaflügeln auftretenden freien Wirbelkerne. Z. Flugwiss. 10, 242.Google Scholar
Mangler, K. W. & Smith, J. H. B. 1959 A theory of the flow past a slender delta wing with leading edge separation. Proc. Roy. Soc. A 251, 200.Google Scholar
Mangler, K. W. & Sells, C. C. L. 1967 The flow near the centre of a slender rolled-up conical vortex sheet. R.A.E. Tech. Rept. 67029.
Prandtl, L. 1922 Über die Entstehung von Wirbeln in der idealen Flüssigkeit mit Anwendung auf die Tragflügeltheorie und andere Aufgaben. Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck), ed. von Kármán, und Levi-Civita, Springer, Berlin 1924, p. 27, also available as R.A.E. Library Transl. no. 1099, 1965. (On the origin of vortices in an ideal fluid.)
Roy, M. 1966 On the rolling-up of the conical vortex sheet above a delta wing. Prog. in Aeron. Sci. (ed. Küchemann et al.) 7. Oxford: Pergamon Press.
Smith, J. H. B. 1966a Improved calculations of leading-edge separation from slender delta wings. R.A.E. Tech. Rept. no. 66070.
Smith, J. H. B. 1966b Theoretical work on the formation of vortex sheets. Prog. in Aeron. Sci. (ed. Küchemann et al.) 7. Oxford: Pergamon Press.