Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T17:49:36.541Z Has data issue: false hasContentIssue false

Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow

Published online by Cambridge University Press:  07 April 2010

HOLGER HOMANN
Affiliation:
Theoretische Physik I, Ruhr-Universität, 44780 Bochum, Germany Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, Bd. de l'Observatoire, 06300 Nice, France
JÉRÉMIE BEC*
Affiliation:
Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, Bd. de l'Observatoire, 06300 Nice, France
*
Email address for correspondence: [email protected]

Abstract

The dynamics of neutrally buoyant particles transported by a turbulent flow is investigated for spherical particles with radii of the order of the Kolmogorov dissipative scale or larger. The pseudo-penalization spectral method that has been proposed by Pasquetti et al. (Appl. Numer. Math., vol. 58, 2008, pp. 946–954) is adapted to integrate numerically the simultaneous dynamics of the particle and of the fluid. Such a method gives a unique handle on the limit of validity of point-particle approximations, which are generally used in applicative situations. Analytical predictions based on such models are compared to result of very well-resolved direct numerical simulations. Evidence is obtained that Faxén corrections reproduce dominant finite-size effects on velocity and acceleration fluctuations for particle diameters up to four times the Kolmogorov scale. The dynamics of particles with larger diameters is consistent with predictions obtained from dimensional analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auton, T., Hunt, J. & Prud'homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Babiano, A., Cartwright, J. H. E., Piro, O. & Provenzale, A. 2000 Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett 84, 57645768.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 27902793.Google Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A. S., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 84502.CrossRefGoogle ScholarPubMed
Bec, J., Biferale, L., Cencini, M., Lanotte, A. S. & Toschi, F. 2010 Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527536.CrossRefGoogle Scholar
Bec, J., Boffetta, G., Biferale, L., Cencini, M., Musacchio, S. & Toschi, F. 2006 Lyapunov exponents of heavy particles in turbulence. Phys. Fluids 18, 091702.CrossRefGoogle Scholar
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of particle-turbulence interactions. J. Fluid Mech. 545, 67111.Google Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid. Mech. 607, 1324.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid. Mech. 630, 179189.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic Press.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.CrossRefGoogle ScholarPubMed
Gatignol, R. 1983 The Faxén formulae for a rigid sphere in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 1, 143160.Google Scholar
Homann, H., Grauer, R., Busse, A. & Müller, W. C. 2007 Lagrangian statistics of Navier–Stokes and MHD turbulence. J. Plasma Phys. 73, 821830.Google Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004 Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501.Google Scholar
Pasquetti, R., Bwemba, R. & Cousin, L. 2008 A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer. Math. 58 (7), 946954.CrossRefGoogle Scholar
Qureshi, N. N., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.CrossRefGoogle ScholarPubMed
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 11691178.CrossRefGoogle Scholar
Ten Cate, A., Dersksen, J. J., Portela, L. M. & van den Akker, H. E. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237, 20842089.CrossRefGoogle Scholar
Voth, G. A., La Porta, A., Crawford, A. M. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.CrossRefGoogle ScholarPubMed
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with sizes larger than Kolmogorov scales in turbulent flows. Physica D 237, 20952100.CrossRefGoogle Scholar
Zaichik, L., Simonin, O. & Alipchenkov, V. 2006 Collision rates of bidisperse inertial particles in isotropic turbulence. Phys. Fluids 18, 035110.CrossRefGoogle Scholar
Zhang, Z. & Prosperetti, A. 2005 A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292324.CrossRefGoogle Scholar