Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:40:19.807Z Has data issue: false hasContentIssue false

Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe

Published online by Cambridge University Press:  12 December 2011

E. Sanmiguel-Rojas
Affiliation:
Área de Mecánica de Fluidos, Universidad de Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
T. Mullin*
Affiliation:
Manchester Centre for Nonlinear Dynamics, The University of Manchester, Manchester M13 9PL, UK
*
Email address for correspondence: [email protected]

Abstract

Results of three-dimensional numerical simulations of the flow through a sudden expansion in a pipe are presented. The axisymmetric state is known to be stable over the range of Reynolds numbers studied, but recent experimental results suggest bifurcation phenomena. A resolution of this dichotomy between calculation and experiment is provided using imperfections to promote the nonlinear development of asymmetric steady states. These lose stability to disordered motion and the boundary between the steady and time-dependent flows has been established over a range of parameters. Moreover, disordered flows are found to co-exist with the axisymmetric regime when the disturbance is removed from the flow. Hence we provide direct numerical evidence for multiplicity of solutions for the axisymmetric expansion problem, which may have relevance to pipe flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baloch, A., Townsend, P. & Webster, M. F. 1995 On two- and three-dimensional expansion flows. Comput. Fluids 24, 863882.CrossRefGoogle Scholar
2. Bohorquez, P., Sanmiguel-Rojas, E., Sevilla, A, Jiménez-González, J. I. & Martínez-Bazán, C. 2011 Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110144.CrossRefGoogle Scholar
3. Boughamoura, A., Belmabrouk, H. & Ben Nasrallah, S. 2003 Numerical study of a piston-driven laminar flow and heat transfer in a pipe with a sudden expansion. Intl J. Therm. Sci. 42, 591604.CrossRefGoogle Scholar
4. Cantwell, C. D., Barkley, D. & Blackburn, H. M 2010 Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22, 034101.CrossRefGoogle Scholar
5. Cliffe, K. A., Hall, E. J. C., Houston, P., Phipps, E. T. & Salinger, A. G. 2011 Adaptivity and a posteriori error control for bifurcation problems. Part III. Incompressible fluid flow in open systems with symmetry. J. Sci. Comput. doi:10.1007/s10915-011-9545-8.CrossRefGoogle Scholar
6. Cliffe, K. A. & Tavener, S. J. 2004 The effect of cylinder rotation and blockage ratio on the onset of periodic flows. J. Fluid Mech. 501, 125133.CrossRefGoogle Scholar
7. Fearn, R. M., Mullin, T. & Cliffe, K. A. 1990 Nonlinear phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595608.CrossRefGoogle Scholar
8. Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
9. Furuichi, N., Takeda, Y. & Kumada, M. 2003 Spatial structure of the flow through an axisymmetric sudden expansion. Exp. Fluids 34, 643650.CrossRefGoogle Scholar
10. Hammad, K. J., Otugen, M. V. & Arik, E. B. 1999 A PIV study of the laminar axisymmetric sudden expansion flow. Exp. Fluids 26, 266272.CrossRefGoogle Scholar
11. Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
12. Latornell, D. J. & Pollard, A. 1986a Some observations on the evolution of shear layer instabilities in laminar flow through a sudden expansion. Phys. Fluids 29, 28282835.CrossRefGoogle Scholar
13. Latornell, D. J. & Pollard, A. 1986b Some observations on the evolution of shear layer instabilities in laminar flow trough axisymmetric sudden expansions. Phys. Fluids 29, 2828.CrossRefGoogle Scholar
14. Macagno, E. O. & Hung, T.-K. 1967 Computational and experimental study of a captive annular eddy. J. Fluid Mech. 28, 4364.CrossRefGoogle Scholar
15. Moncaux, R., Ravelet, F., Dubrulle, B., Chiffaudel, A. & Daviaud, F. 2006 Properties of steady states in turbulent axisymmetric flows. Phys. Rev. Lett. 96, 124502.CrossRefGoogle Scholar
16. Mullin, T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43, 124.CrossRefGoogle Scholar
17. Mullin, T., Seddon, J. R. T., Mantle, M. D. & Sederman, A. J. 2009 Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21, 014110.CrossRefGoogle Scholar
18. Munoz-Esparza, D. & Sanmiguel-Rojas, E. 2011 Numerical simulations of the laminar flow in pipes with wire coil inserts. Comput. Fluids 44, 169177.CrossRefGoogle Scholar
19. Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323346.CrossRefGoogle Scholar
20. Neofytou, P. 2006 Transition to asymmetry of generalized Newtonian fluid flows through a symmetric sudden expansion. J. Non-Newtonian Fluid Mech. 133, 132140.CrossRefGoogle Scholar
21. Richardson, L. F. 1910 The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam. Trans. R. Soc. Lond. A 210, 307357.Google Scholar
22. Roache, P. J. 1994 Perspective: a method for uniform reporting of grid refinement studies. Trans. ASME: J. Fluids Engng 116, 405413.Google Scholar
23. Sanmiguel-Rojas, E., del Pino, C. & Gutiérrez-Montes, C. 2010 Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion. Phys. Fluids 22, 071702.CrossRefGoogle Scholar
24. Sreenivasan, K. R. & Strykowski, P. J. 1983 An instability associated with a sudden expansion in a pipe flow. Phys. Fluids 26, 27662768.CrossRefGoogle Scholar
25. Tavener, S. J. 1994 Stability of the -symmetric flow past a sphere in a pipe. Phys. Fluids 6, 38843892.CrossRefGoogle Scholar
26. Xia, Y., Callaghan, P. T. & Jeffrey, K. R. 1992 Imaging velocity profiles: flow through an abrupt contraction and expansion. AIChE J. 38, 14081420.CrossRefGoogle Scholar