Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-20T14:52:13.815Z Has data issue: false hasContentIssue false

Finite amplitude side-band stability of a viscous film

Published online by Cambridge University Press:  29 March 2006

S. P. Lin
Affiliation:
Mechanical Engineering Department, Clarkson College of Technology, Potsdam, New York 13676

Abstract

The nonlinear stability of a viscous film flowing steadily down an inclined plane is investigated by the method of multiple scales. It is shown that the super-critically stable, finite amplitude, long, monochromatic wave obtained by Lin (1969, 1970, 1971) is stable to side-band disturbances under modal interaction if the bandwidth is less in magnitude than to the ratio of the amplitude to the film thickness. Near the upper branch of the linear neutral-stability curve where the amplification rate ci is O2), the nonlinear evolution of initially infinitesimal waves of a finite bandwidth is shown to obey the Landau-Stuart equation, Near the lower branch of the neutral curve, the nonlinear evolution is stronger. An equation is derived for describing this strong nonlinear development of relatively long waves. In practice, disturbance of this type clusters in the form of a hump which cannot be constructed only by the first few harmonics.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anshus, B. E. 1965 Finite amplitude wave flow of a thin film on a vertical wall. Ph.D. thesis, University of California, Berkeley.
Benjamin, T. B. 1957 J. Fluid Mech. 2, 554.
Benjamin, T. B. 1961 J. Fluid Mech. 10, 401.
Benney, D. J. 1966 J. Math. & Phys. 45, 150.
Binnie, A.M. 1957 J. Fluid Mech. 2, 551.
Diprima, R. C., Eckhaus, W. & Segel, L. A. 1971 J. Fluid Mech. 49, 705.
Duckler, A. E. 1972 Prog. Heat & Mass Transfer 6, 207.
Gjevik, B. 1970 Phys. Fluids 13, 1918.
Grad, H. & Hu, P. N. 1967 Phys. Fluids, 19, 2596.
Hocking, L. M. & Stewartson, K. 1971 Mathernatika 18, 219.
Hocking, L. M. & Stewartson, K. 1972 Proc. Roy. Soc. A 362, 289.
Hocking, L. M., Stewartson, K. & Stuart, J. T. 1972 J. Fluid Mech. 51, 705.
Johnson, R. S. 1970 J. Fluid Mech. 42, 49.
Johnson, R. S. 1972 Phys. Fluids, 15, 1693.
Kapitza, P. L. & Kapitza, S. P. 1949 Zh. Eks. Teor. Fiz. 19, 105.
Kelly, P. L. 1965 Phys. Rev. Lett. 15, 1005.
Lin, S. P. 1969 J. Fluid Mech. 36, 113.
Lin, S. P. 1970 J. Fluid Mech. 40, 307.
Lin, S. P. 1971 Phys. Fluids 14, 263.
Mei, C. C. 1966 J. Alath. & Phys. 45, 266.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.
Segel, L. A. 1969 J. Fluid Xech. 38, 203.
Stewartson, K. & Stuart, J. T. 1971 J. Fluid Mech. 48, 529.
Talanov, V. I. 1965 Zh. Eks. Teor. Fiz. Pis. Red. 2, 233. (Trans. J. Exp. Theor. Phys.
Yih, C. S. 1963 Phys. Fluids 6, 321.