Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:37:21.470Z Has data issue: false hasContentIssue false

Fine-structure turbulence in the wall region of a turbulent boundary layer

Published online by Cambridge University Press:  29 March 2006

H. Ueda
Affiliation:
Department of Chemical Engineering, University of Kyoto, Japan
J. O. Hinze
Affiliation:
Department of Mechanical Engineering, University of Technology, Delft, Netherlands

Abstract

Measurements have been made concerning the fine structure of the turbulence in the part adjacent to the wall of the wall region of a plane turbulent boundary layer. The objective was to gain further information concerning the larger-scale disturbance mechanism which is mainly responsible for the generation of turbulence. Hot-wire anemomet.ry was used and information on the fine structure was obtained by differentiating and filtering the hot-wire signal.

The distributions of the Kolmogorov microscale and of the flatness and skewness factors of the axial fluctuating velocity u and its first and second derivative determined at two Reynolds numbers suggest the existence of Reynolds number similarity. In the region y+ < 15 the flatness and skewness factors of u increase with decreasing y+. At approximately y+ = 15 the flatness factor shows a minimum value, while the skewness factor becomes zero. This location agrees with that where the turbulence intensity u′ has a maximum value. In the outer part of the wall region (y+ > 100) the flatness and skewness factors approach values obtained in shear-free turbulence at the same turbulence Reynolds number.

The fine structure of the turbulence is strongly associated with and dominated by the random, larger-scale, intermittent inrush-ejection cycle. In the viscous sublayer both the fine structure, and the large-scale mechanism of the turbulence are influenced mainly by the inrush phase, while further out in the wall region (y+ > 40) they are influenced by both inrush and ejection. As a result, in the viscous sublayer the average burst periods of the high frequency turbulence components and their flatness factors (of ∂u/∂t and of ∂2u/∂t2) attain values twice those in the outer part.

The change in the mechanism of the fine structure with distance from the wall is clearly demonstrated by the spectra of non-negative variables, i.e. (∂u/∂t)2 and (∂2u/∂t2)2. The spectra agree with each other and decrease with increasing frequency, following a power law as predicted by Gurvich & Yaglom (1967). The power law applies to almost the whole frequency range, when the highest, viscous, frequency range is excluded. However, the exponent is different for the viscous sublayer and the outer part of the wall region. In the buffer layer the spectra have two distinct power-law regions. In the lower frequency range the exponent is the same as that for the viscous sublayer, while in the higher frequency range it is the same as that for the outer part of the wall region.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Townsend, A. A. 1949 Proc. Roy. Soc. A 199, 238.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech., 37, 1.Google Scholar
Eckelmann, H. 1970 Mitteilungen Max-Planck-Institut für Strömungsforschung und Aerodynamische Versuchsanstalt, Gottingem, no. 48.
Frenkiel, F. N. & Klebanoff, P. S. 1967 Phys. Fluids, 10, 1737.
Frenkiel, F. N. & Klebanoff, P. S. 1971 J. Fluid Mech. 48, 183.
Gibson, C. H., Stegen, G. H. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Gurvich, A. S. & Yaglom, A. M. 1967 Phys. FZuids, 10 (suppl.), 559.Google Scholar
Gurvich, A. S. & Zubkovshi, S. L. 1963 Izv. Akad. Nauk S.S.S.R., Ser. Geophys. No. 1856.
Hinze, J. O. 1959 Turbulence. McGraw-Hill.
Hinze, J. O. 1973 Appl. Sci. Res. 28, 453.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Klebanoff, P. S. 1955 N.A.C.A. Tech. Rep. no. 1247.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 J. Fluid Mech. 13, 81.
Kolmogorov, A. N. 1941 C. R. Acad. Sci. (Dokl.) U.S.S.R. 30, 301.
Kolmogorov, A. N. 1962 J. Fluid 13, 81.
Kreplin, H. P. 1973 M.Sc. thesis, Max-Planck-Institut für Strömungsforschung.
Kuo, A. Y. S. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Kuo, A. Y. S. & Corrsin, S. 1972 J. Fluid Mech. 56, 447.
Laufer, J. 1953 N.A.C.A. Tech. Note, no. 2954.
Laufer, J. 1954 N.A.C.A. Tech. Rep. no. 1174.
Lawn, C. J. 1971 J. Fluid Mech. 48, 477.
Ludwieg, H. & Tillmann, W. 1949 Ing. Arch. 17, 288.
Morrison, W. R. B. & Kronauer, R. E. 1969 J. Fluid Mech. 39, 117.
Nikuradse, J. 1933 V.D.J. Forschungsheft, no. 361.
Oboukrov, A. M. 1962 J. Fluid Mech. 13, 77.
Orszag, S. A. 1970 Phys. Fluids, 13, 2211.
Pao, Y. H. 1965 Phys. Fluids, 8, 1063.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Pond, S. & Stewart, R. W. 1965 Izv. Acad. Sci. U.S.S.R., Atmos. OceaaicSer. 1, 914.
Rao, K. N., Narasimra, R. & Badri Narayanan, M. A. 1971 J. Flud Mech., 48, 339.
Sandborn, V. A. 1959 J. Fluid Mech., 6, 211.Google Scholar
Schlichting, H. 1968 Boundry Layer Theory. McGraw-Hill.
Sheih, C. W., Tennekes, H. & Lumley, J. L. 1971 Phys. Fluids, 14, 201.
Stewart, R. W. & Townsend, A. A. 1951 Phil. Trans. A 243, 359.
Stewart, R. W., Wilson, J. R. & Burling, R. W. 1970 J. Fluid Mech., 41, 141.Google Scholar
Tennekes, H. & Wyngaard, J. C. 1972 J. Fluid Mech. 55, 93.
Van Atta, C. W. & Chen, W. Y. 1968 J. Fluid Mech. 34, 497.
Van Atta, C. W. & Chen, W. Y. 1970 J. Fluid Mech. 44, 145.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 J. Fluid Mech. 54, 39.
Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55, 65.
Wills, J. A. B. 1962 J. Fluid Mech. 12, 388.
Wyngaard, J. C. 1968 J. Sci. Instrum. (J. Phys. E), 1 (2), 1105.
Wyngaard, J. C. & Coté, O. R. 1971 J. Atmos. Sci. 28, 190.
Wyngaard, J. C. & Tennekes, H. 1970 Phys. Fluids, 13, 1962.
Yaclom, A. M. 1966 Sov. Phys. Dokl. 11, 26.
Zariíc, Z. 1972 4th All-Union Heat Mass Transfer Conf., Minsk, U.S.S.R.