Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T15:02:10.587Z Has data issue: false hasContentIssue false

Fast transient spray cooling of a hot thick target

Published online by Cambridge University Press:  24 October 2019

Fabian M. Tenzer
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Alarich-Weiß-Straße 10, 64287 Darmstadt, Germany
Ilia V. Roisman*
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Alarich-Weiß-Straße 10, 64287 Darmstadt, Germany
Cameron Tropea
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Alarich-Weiß-Straße 10, 64287 Darmstadt, Germany
*
Email address for correspondence: [email protected]

Abstract

Spray cooling of a hot target is characterized by strong heat flux and fast change of the temperature of the wall interface. The heat flux during spray cooling is determined by the instantaneous substrate temperature, which is illustrated by boiling curves. The variation of the heat flux is especially notable during different thermodynamic regimes: film, transitional and nucleate boiling. In this study transient boiling curves are obtained by measurement of the local and instantaneous heat flux produced by sprays of variable mass flux, drop diameter and impact velocity. These spray parameters are accurately characterized using a phase Doppler instrument and a patternator. The hydrodynamic phenomena of spray impact during various thermodynamic regimes are observed using a high-speed video system. A theoretical model has been developed for heat conduction in the thin expanding thermal boundary layer in the substrate. The theory is able to predict the evolution of the target temperature in time in the film boiling regime. Moreover, a remote asymptotic solution for the heat flux during the fully developed nucleate boiling regime is developed. The theoretical predictions agree very well with the experimental data for a wide range of impact parameters.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Zaid, M. 2003 An experimental study of the evaporation characteristics of emulsified liquid droplets. Heat Mass Transfer 40 (9), 737741.Google Scholar
Bar-Cohen, A., Arik, M. & Ohadi, M. 2006 Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94 (8), 15491570.Google Scholar
Bernardin, J. D., Stebbins, C. J. & Mudawar, I. 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.10.1016/0017-9310(96)00119-6Google Scholar
Bertola, V. 2015 An impact regime map for water drops impacting on heated surfaces. Intl J. Heat Mass Transfer 85, 430437.10.1016/j.ijheatmasstransfer.2015.01.084Google Scholar
Breitenbach, J., Roisman, I. V. & Tropea, C. 2017a Drop collision with a hot, dry solid substrate: heat transfer during nucleate boiling. Phys. Rev. Fluids 2 (7), 074301.10.1103/PhysRevFluids.2.074301Google Scholar
Breitenbach, J., Roisman, I. V. & Tropea, C. 2017b Heat transfer in the film boiling regime: single drop impact and spray cooling. Intl J. Heat Mass Transfer 110, 3442.10.1016/j.ijheatmasstransfer.2017.03.004Google Scholar
Breitenbach, J., Roisman, I. V. & Tropea, C. 2018 From drop impact physics to spray cooling models: a critical review. Exp. Fluids 59 (3), 55.10.1007/s00348-018-2514-3Google Scholar
Carey, V. P. 2018 Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd edn. Taylor and Francis.10.1201/9780203748756Google Scholar
Cebo-Rudnicka, A., Malinowski, Z. & Buczek, A. 2016 The influence of selected parameters of spray cooling and thermal conductivity on heat transfer coefficient. Intl J. Therm. Sci. 110, 5264.10.1016/j.ijthermalsci.2016.06.031Google Scholar
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432 (1884), 1341.Google Scholar
Chaze, W., Caballina, O., Castanet, G., Pierson, J. F., Lemoine, F. & Maillet, D. 2019 Heat flux reconstruction by inversion of experimental infrared temperature measurements application to the impact of a droplet in the film boiling regime. Intl J. Heat Mass Transfer 128, 469478.10.1016/j.ijheatmasstransfer.2018.08.069Google Scholar
Chen, R.-H. H., Chow, L. C. & Navedo, J. E. 2002 Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Intl J. Heat Mass Transfer 45 (19), 40334043.10.1016/S0017-9310(02)00113-8Google Scholar
Chen, S. J. & Tseng, A. A. 1992 Spray and jet cooling in steel rolling. Intl J. Heat Fluid Flow 13 (4), 358369.10.1016/0142-727X(92)90006-UGoogle Scholar
Cheng, W. L., Zhang, W. W., Chen, H. & Hu, L. 2016 Spray cooling and flash evaporation cooling: the current development and application. Renew. Sustain. Energy Rev. 55, 614628.10.1016/j.rser.2015.11.014Google Scholar
Ebadian, M. A. & Lin, C. X. 2011 A review of high-heat-flux heat removal technologies. J. Heat Transfer 133 (11), 110801.10.1115/1.4004340Google Scholar
Estes, K. A. & Mudawar, I. 1995 Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces. Intl J. Heat Mass Transfer 38 (16), 29852996.10.1016/0017-9310(95)00046-CGoogle Scholar
Itaru, M. & Kunihide, M. 1978 Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Intl J. Heat Mass Transfer 21 (5), 605613.10.1016/0017-9310(78)90057-1Google Scholar
Kim, J. 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28 (4), 753767.10.1016/j.ijheatfluidflow.2006.09.003Google Scholar
Lefebvre, A. 1988 Atomization and Sprays. CRC Press.10.1201/9781482227857Google Scholar
Liang, G. & Mudawar, I. 2017a Review of spray cooling. Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Intl J. Heat Mass Transfer 115 (September), 11741205.10.1016/j.ijheatmasstransfer.2017.06.029Google Scholar
Liang, G. & Mudawar, I. 2017b Review of spray cooling. Part 2: High temperature boiling regimes and quenching applications. Intl J. Heat Mass Transfer 115, 12061222.10.1016/j.ijheatmasstransfer.2017.06.022Google Scholar
Mudawar, I. 2001 Assessment of high-heat-flux thermal management schemes. IEEE Trans. Compon. Packag. Technol. 24 (2), 122141.10.1109/6144.926375Google Scholar
Mudawar, I. & Deiters, T. A. 1994 A universal approach to predicting temperature response of metallic parts to spray quenching. Intl J. Heat Mass Transfer 37 (3), 347362.10.1016/0017-9310(94)90070-1Google Scholar
Nižetić, S., Čoko, D., Yadav, A. & Grubišić-Čabo, F. 2016 Water spray cooling technique applied on a photovoltaic panel: the performance response. Energy Convers. Manage. 108, 287296.10.1016/j.enconman.2015.10.079Google Scholar
Özışık, M. N. 1980 Heat Conduction. Wiley.Google Scholar
Pola, A., Gelfi, M. & La Vecchia, G. M. 2013 Simulation and validation of spray quenching applied to heavy forgings. J. Mater. Process. Technol. 213 (12), 22472253.10.1016/j.jmatprotec.2013.06.019Google Scholar
Puschmann, F. & Specht, E. 2004 Transient measurement of heat transfer in metal quenching with atomized sprays. Exp. Therm. Fluid Sci. 28 (6), 607615.Google Scholar
Roisman, I. V., Breitenbach, J. & Tropea, C. 2018 Thermal atomisation of a liquid drop after impact onto a hot substrate. J. Fluid Mech. 842, 87101.10.1017/jfm.2018.123Google Scholar
Sargunanathan, S., Elango, A. & Mohideen, S. T. 2016 Performance enhancement of solar photovoltaic cells using effective cooling methods: a review. Renew. Sustain. Energy Rev. 64, 382393.10.1016/j.rser.2016.06.024Google Scholar
Staat, H. J. J. J., Tran, T., Geerdink, B., Riboux, G., Sun, C., Gordillo, J. M. & Lohse, D. 2015 Phase diagram for droplet impact on superheated surfaces. J. Fluid Mech. 779, 630648.10.1017/jfm.2015.465Google Scholar
Tartarini, P., Lorenzini, G. & Randi, M. R. 1999 Experimental study of water droplet boiling on hot, non-porous surfaces. Heat Mass Transfer 34 (6), 437447.Google Scholar
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.10.1103/PhysRevLett.108.036101Google Scholar
Wendelstorf, J., Spitzer, K. H. & Wendelstorf, R. 2008 Spray water cooling heat transfer at high temperatures and liquid mass fluxes. Intl J. Heat Mass Transfer 51 (19-20), 49024910.10.1016/j.ijheatmasstransfer.2008.01.032Google Scholar
Woodfield, P. L., Monde, M. & Mitsutake, Y. 2006 Improved analytical solution for inverse heat conduction problems on thermally thick and semi-infinite solids. Intl J. Heat Mass Transfer 49 (17-18), 28642876.10.1016/j.ijheatmasstransfer.2006.01.050Google Scholar
Yang, J., Chow, L. C. & Pais, M. R. 1996 Nucleate boiling heat transfer in spray cooling. J. Heat Transfer 118 (3), 668671.10.1115/1.2822684Google Scholar

Tenzer et al. supplementary movie 1

Spray cooling regimes at different surface temperatures around the Leidenfrost point

Download Tenzer et al. supplementary movie 1(Video)
Video 10.5 MB

Tenzer et al. supplementary movie 2

Phenomena of spray impact regimes at different surface temperatures

Download Tenzer et al. supplementary movie 2(Video)
Video 10.4 MB