Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:08:55.149Z Has data issue: false hasContentIssue false

Fano resonances in acoustics

Published online by Cambridge University Press:  26 October 2010

STEFAN HEIN
Affiliation:
Institut für Aerodynamik und Strömungstechnik, DLR Göttingen, 37073 Göttingen, Germany
WERNER KOCH*
Affiliation:
Institut für Aerodynamik und Strömungstechnik, DLR Göttingen, 37073 Göttingen, Germany
LOTHAR NANNEN
Affiliation:
Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083 Göttingen, Germany
*
Email address for correspondence: [email protected]

Abstract

In contrast to completely open systems, laterally confined domains can sustain localized, truly trapped modes with nominally zero radiation loss. These discrete resonant modes cannot be excited linearly by the continuous propagating duct modes due to symmetry constraints. If the symmetry of the geometry is broken the trapped modes become highly localized quasi-trapped modes which can interfere with the propagating duct modes. The resulting narrowband Fano resonances with resonance and antiresonance features are a generic phenomenon in all scattering problems with multiple resonant pathways. This paper deals with the classical scattering of acoustic waves by various obstacles such as hard-walled single and multiple circular cylinders or rectangular and wedge-like screens in a two-dimensional duct without mean flow. The transmission and reflection coefficients as well as the (complex) resonances are computed numerically by means of the finite-element method in conjunction with two different absorbing boundary conditions, namely the complex scaling method and the Hardy space method. The results exhibit the typical asymmetric Fano line shapes near the trapped-mode resonances if the symmetry of the geometry is broken.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar, J. & Combes, J. M. 1971 A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269279.CrossRefGoogle Scholar
Al-Naib, I. A. I., Jansen, C. & Koch, M. 2009 High Q-factor metasurfaces based on miniaturized asymmetric single split resonators. Appl. Phys. Lett. 94, 153505-1–153505-4.Google Scholar
Aly, K. & Ziada, S. 2010 Numerical simulation of internal cavities acoustic trapped modes with mean flow. In ASME 3rd Joint US–European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels and Minichannels – 1–5 August 2010, Montreal, Canada. ASME.Google Scholar
Aslanyan, A., Parnovski, L. & Vassiliev, D. 2000 Complex resonances in acoustic waveguides. Q. J. Mech. Appl. Math. 53, 429447.CrossRefGoogle Scholar
Baslev, E. & Combes, J. M. 1971 Spectral properties of many body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22, 280294.Google Scholar
Bérenger, J. P. 1994 A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185200.CrossRefGoogle Scholar
Bindel, D. S. & Govindjee, S. 2005 Elastic PMLs for resonator anchor loss simulation. Intl J. Numer. Meth. Engng 64, 789818.Google Scholar
Blevins, R. D. 1986 Acoustic modes of heat exchanger tube bundles. J. Sound Vib. 109 (3), 1931.CrossRefGoogle Scholar
Borthwick, D. 2007 Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhäuser.Google Scholar
Boström, A. 1980 Transmission and reflection of acoustic waves by an obstacle in a waveguide. Wave Motion 2, 167184.Google Scholar
Callan, M., Linton, C. M. & Evans, D. V. 1991 Trapped modes in two-dimensional waveguides. J. Fluid Mech. 229, 5164.Google Scholar
Cattapan, G. & Lotti, P. 2007 Fano resonances in stubbed quantum waveguides with impurities. Eur. Phys. J. B 60, 5160.CrossRefGoogle Scholar
Chew, W. C. & Weedon, W. H. 1994 A 3-D perfectly matched medium from modified Maxwell's equation with stretched coordinates. Microw. Opt. Technol. Lett. 7 (13), 599604.CrossRefGoogle Scholar
Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. 2009 Experimental observation of trapped modes in a water wave channel. EPL 88, 20006-p1–20006-p6.Google Scholar
Collino, F. & Monk, P. 1998 The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (6), 20612090.CrossRefGoogle Scholar
Davies, E. B. & Parnovski, L. 1998 Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math 51, 477492.Google Scholar
Duan, Y., Koch, W., Linton, C. M. & McIver, M. 2007 Complex resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119147.CrossRefGoogle Scholar
El Boudouti, E. H., Mrabti, T., Al-Wahsh, H., Djafari-Rouhani, B., Akjouj, A. & Dobrzynski, L. 2008 Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. J. Phys. Condens. Matter. 20, 255212-1–255212-10.CrossRefGoogle Scholar
Evans, D. V. 1992 Trapped acoustic modes. IMA J. Appl. Math. 49 (1), 4560.CrossRefGoogle Scholar
Evans, D. V., Levitin, M. & Vassiliev, D. 1994 Existence theorems for trapped modes. J. Fluid Mech. 261, 2131.CrossRefGoogle Scholar
Evans, D. V. & Linton, C. M. 1991 Trapped modes in open channels. J. Fluid Mech. 225, 153175.CrossRefGoogle Scholar
Evans, D. V., Linton, C. M. & Ursell, F. 1993 Trapped mode frequencies embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 46, 253274.Google Scholar
Evans, D. V. & Porter, R. 1997 Trapped modes about multiple cylinders in a channel. J. Fluid Mech. 339, 331356.CrossRefGoogle Scholar
Evans, D. V. & Porter, R. 1998 Trapped modes embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 52, 263274.Google Scholar
Evans, D. V. & Porter, R. 1999 Trapping and near-trapping by arrays of cylinders in waves. J. Engng Math. 35, 149179.CrossRefGoogle Scholar
Fano, U. 1935 Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco. Nuovo Cimento 12, 154161.Google Scholar
Fano, U. 1961 Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 18661878.Google Scholar
Fano, U., Pupillo, G., Zannoni, A. & Clark, C. W. 2005 On the absorption spectrum of noble gases at the arc spectrum limit. J. Res. Natl. Inst. Stand. Technol. 110, 583587.Google Scholar
Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. 2007 Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401-1–147401-4.CrossRefGoogle ScholarPubMed
Fuller, C. R. & Bies, D. A. 1978 A reactive acoustic attenuator. J. Sound Vib. 56, 4559.CrossRefGoogle Scholar
Harari, I., Patlashenko, I. & Givoli, D. 1998 Dirichlet-to-Neumann maps for unbounded wave guides. J. Comp. Phys. 143, 200223.Google Scholar
Hein, S., Hohage, T. & Koch, W. 2004 On resonances in open systems. J. Fluid Mech. 506, 255284.Google Scholar
Hein, S., Hohage, T., Koch, W. & Schöberl, J. 2007 Acoustic resonances in a high lift configuration. J. Fluid Mech. 582, 179202.Google Scholar
Hein, S. & Koch, W. 2008 Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid Mech. 605, 401428.Google Scholar
Hislop, P. D. & Sigal, I. M. 1996 Introduction to Spectral Theory. Springer.CrossRefGoogle Scholar
Hohage, T. & Nannen, L. 2009 Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47 (2), 972996.CrossRefGoogle Scholar
Hu, F. Q. 2004 Absorbing boundary conditions. Intl J. Comput. Fluid Dyn. 18 (6), 513522.CrossRefGoogle Scholar
Joe, Y. S., Satanin, M. & Kim, C. S. 2006 Classical analogy of Fano resonances. Phys. Scr. 74, 259266.CrossRefGoogle Scholar
Kim, S. & Pasciak, J. E. 2009 The computation of resonances in open systems using a perfectly matched layer. Math. Comput. 78, 13751398.Google Scholar
Kirby, R. 2008 Modelling sound propagation in acoustic waveguides using a hybrid numerical method. J. Acoust. Soc. Am. 124 (4), 19301940.Google Scholar
Koch, W. 2009 Acoustic resonances and trapped modes in annular plate cascades. J. Fluid Mech. 628, 155180.CrossRefGoogle Scholar
Ladrón de Guevara, M. L., Claro, F. & Orellana, P. A. 2003 Ghost Fano resonance in a double quantum dot molecule attached to leads. Phys. Rev. B 67, 195335-1–195335-6.Google Scholar
Li, Y. & Mei, C. C. 2006 Subharmonic resonance of a trapped wave near a vertical cylinder in a channel. J. Fluid Mech. 561, 391416.CrossRefGoogle Scholar
Linton, C. M. 1995 Acoustic scattering by a sphere in a circular cylindrical waveguide. Q. J. Mech. Appl. Math. 48, 211235.Google Scholar
Linton, C. M. & Evans, D. V. 1992 The radiation and scattering of surface waves by a vertical circular cylinder in a channel. Phil. Trans. R. Soc. Lond. A 338, 325357.Google Scholar
Linton, C. M. & McIver, M. 2002 Periodic structures in waveguides. Proc. R. Soc. Lond. A 458, 30033021.Google Scholar
Linton, C. M., McIver, M., McIver, P., Ratcliffe, K. & Zhang, J. 2002 Trapped modes for off-centre structures in guides. Wave Motion 36, 6785.Google Scholar
McIver, M. & Linton, C. M. 1995 On the non-existence of trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math. 48, 543555.Google Scholar
Mingaleev, S. F., Miroshnichenko, A. E. & Kivshar, Y. S. 2008 Coupled-resonator-induced reflection in photonic-crystal waveguides. Opt. Express 16, 1164711659.CrossRefGoogle Scholar
Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. 2010 Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 22572298.CrossRefGoogle Scholar
Moiseyev, N. 1998 Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phy. Rep. 302, 211293.CrossRefGoogle Scholar
Nannen, L. 2008 Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten. PhD thesis, Georg-August Universität Göttingen, Der Andere Verlag, Tönning.Google Scholar
Nannen, L. & Schädle, A. 2010 Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities. arXiv:math.NA/1025v1.Google Scholar
Papasimakis, N., Fedotov, V. A. & Zheludev, N. I. 2008 Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903-1–253903-4.Google Scholar
Parker, R. 1978 Acoustic resonances in passages containing banks of heat exchanger tubes. J. Sound Vib. 57, 245260.Google Scholar
Parker, R. 1984 Acoustic resonances and blade vibration in axial flow compressors. J. Sound Vib. 92, 529539.Google Scholar
Parker, R. & Stoneman, S. A. T. 1989 The excitation and consequences of acoustic resonances in enclosed fluid flow around solid bodies. Proc. Inst. Mech. Engng 203, 919.Google Scholar
Pierce, A. D. 1981 Acoustics. McGraw Hill.Google Scholar
Porter, R. 2007 Trapped modes in thin elastic plates. Wave Motion 45, 315.Google Scholar
Porter, R. & Evans, D. V. 1999 Rayleigh–Bloch surface waves along periodic gratings and their connection with trapped modes in waveguides. J. Fluid Mech. 386, 233258.Google Scholar
Porter, R. & Evans, D. V. 2002 Trapped modes about tube bundles in waveguides. In IUTAM Symposium on Diffraction in Fluid Mechanics and Elasticity (ed. Martin, P. A., Abrahams, I. D. & Simon, M. J.), pp. 8794. Kluwer.CrossRefGoogle Scholar
Retzler, C. H. 2001 Trapped modes: an experimental investigation. Appl. Ocean Res. 23 (4), 249250.CrossRefGoogle Scholar
Rim, M. & Kim, Y.-H. 2000 Narrowband noise attenuation characteristics of in-duct acoustic screens. J. Sound Vib. 234 (5), 737759.CrossRefGoogle Scholar
Schöberl, J. 1997 NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 4152.Google Scholar
Shao, Z.-A., Porod, W. & Lent, C. S. 1994 Transmission resonances and zeros in quantum waveguide systems with attached resonators. Phys. Rev. B 49 (11), 74537465.CrossRefGoogle ScholarPubMed
Simon, B. 1973 The theory of resonances for dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247274.Google Scholar
Utsunomiya, T. & Eatock Taylor, R. 1999 Trapped modes around a row of circular cylinders in a channel. J. Fluid Mech. 386, 259279.Google Scholar
Voo, K.-K. & Chu, C. S. 2006 Localized states in continuum in low-dimensional systems. Phys. Rev. B 74, 155306-1–155306-7.Google Scholar
Zworski, M. 1999 Resonances in physics and geometry. Not. AMS 46 (3), 319328.Google Scholar