Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:34:45.329Z Has data issue: false hasContentIssue false

The extended Rayleigh theory of the oscillation of liquid droplets

Published online by Cambridge University Press:  20 April 2006

C. A. Morrison
Affiliation:
U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783, U.S.A.
R. P. Leavitt
Affiliation:
U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783, U.S.A.
D. E. Wortman
Affiliation:
U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783, U.S.A.

Abstract

The Rayleigh theory of oscillation of liquid drops is extended to include the effects of viscosity and a uniform external electric field. The resonant frequencies of the modes of the drop are shown to be shifted by the electric field. The magnitude and sign of the frequency shift depends on the dielectric constant of the drop. The condition for instability of drops in large electric fields is given and found to differ from that given by previous workers. This difference is attributed to the assumption by previous workers that the drops, under the influence of an electric field, distort into ellipsoids of revolution about the field direction. The dynamical equations are derived and the solution for small oscillations is given in an oscillating field and in an amplitude-modulated optical field.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brazier-Smith, P. R., Brook, M., Lantham, J., Saunders, C. P. R. & Smith, M. H. 1971 Proc. Roy. Soc. A 322, 523.
Brook, M. & Lantham, D. J. 1968 J. Geophys. Res. 73, 7137.
Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Clarendon.
Garton, G. G. & Krasucki, Z. 1964 Proc. Roy. Soc. A 280, 211.
Goldstein, H. 1950 Classical Mechanics, cha. 1. Addison-Wesley.
Hendricks, C. D. & Schneider, J. M. 1963 Am. J. Phys. 31, 450.
Jackson, J. D. 1975 Classical Electrodynamics, p. 160. Wiley.
Lamb, H. 1932 Hydrodynamics. Dover.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 54. Addison-Wesley.
O'Konski, C. T. & Harris, F. E. 1957 J. Phys. Chem. 61, 1172.
O'Konski, C. T. & Thacher, H. 1953 J. Phys. Chem. 57, 955.
Rayleigh, Lord 1879 Proc. Roy. Soc. 29, 71.
Rayleigh, Lord 1882 Phil. Mag. 14, 184.
Rosenkilde, C. E. 1969 Proc. Roy. Soc. A 312, 473.
Schneider, J. M. 1964 Ph.D. thesis, University of Illinois.
Sozou, C. 1972 Proc. Roy. Soc. A 331, 263.
Taylor, G. 1964 Proc. Roy. Soc. A 280, 383.
Taylor, G. 1966 Proc. Roy. Soc. A 291, 159.
Thacher, H. 1952 J. Phys. Chem. 56, 795.
Wortman, D. E. 1979 Harry Diamond Lab. Rep. HDL-TR-1878. (Also U.S.N.T.I.S., Spring-field, VA, USA, Rep. no. A070965.)