Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T06:13:46.809Z Has data issue: false hasContentIssue false

Explosive dispersal of granular media

Published online by Cambridge University Press:  17 March 2023

Kun Xue*
Affiliation:
State Key Laboratory of Explosion Science and Technology, Explosion Protection and Emergency Dispersal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, PR China
Lvlan Miu
Affiliation:
State Key Laboratory of Explosion Science and Technology, Explosion Protection and Emergency Dispersal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, PR China
Jiarui Li
Affiliation:
State Key Laboratory of Explosion Science and Technology, Explosion Protection and Emergency Dispersal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, PR China
Chunhua Bai
Affiliation:
State Key Laboratory of Explosion Science and Technology, Explosion Protection and Emergency Dispersal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, PR China
Baolin Tian
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 1000871, PR China
*
Email address for correspondence: [email protected]

Abstract

Explosive dispersal of granular media widely occurs in nature across various length scales, also enabling engineering applications ranging from commercial or military explosive systems to the loss prevention industry. However, the complex particle–flow coupling makes the explosive dispersal behaviour of particles difficult to control or even characterize. Here, we study the central explosion-driven dispersal of dense particle layers using the coarse-grained computational fluid dynamics–discrete element method and present a comprehensive investigation of both macroscale dispersal behaviours and particle-scale pattern formation. Employing three independent dimensionless parameters that characterize the efficiency, homogeneity and completeness of explosive dispersal, we categorize the dispersal behaviours into ideal, partial, retarded and failed modes, and propose the corresponding thresholds. As the mass ratio of granular materials to central pressurized gases (M/C) spans four orders of magnitude, the dispersal mode transitions from ideal to partial, then to retarded and finally to failed mode. The transitions of dispersal modes correspond to the particle–flow coupling regime crossovers, which change from decoupling to weak, medium and finally to strong coupling as the dispersal mode undergoes corresponding transitions. We proceed to develop continuum models accounting for the shock compaction and the ensuing pulsation of the particle ring that are capable of identifying the ideal dispersal mode from various dispersal systems. We also provide insights into the origins of diverse particle-scale patterns that are strongly correlated with macroscale dispersal modes and critical for the accurate prediction of dispersal modes.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglitskiy, Y., Velikovich, A.L., Karasik, M., Metzler, N. & Obenschain, S.P. 2010 Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the ICF-relevant conditions. Phil. Trans. R. Soc. A Math. Phys. Engng Sci. 368, 17391768.CrossRefGoogle ScholarPubMed
Baer, M.R. & Nunziato, J.W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.CrossRefGoogle Scholar
Bai, C.H., Wang, Y., Xue, K. & Wang, L.F. 2018 Experimental study of detonation of large-scale powder–droplet–vapor mixtures. Shock Waves. 28, 599–611.CrossRefGoogle Scholar
Borchardt-Ott, W. 2012 Crystallography – An Introduction, 3rd edn. Springer.CrossRefGoogle Scholar
Britan, A. & Ben-Dor, G. 2006 Shock tube study of the dynamical behavior of granular materials. Intl J. Multiphase Flow 32, 623642.CrossRefGoogle Scholar
Carmouze, Q., Saurel, R., Chiapolino, A. & Lapebie, E. 2019 Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows. J. Comput. Phys. 408, 109176.Google Scholar
Chiapolino, A. & Saurel, R. 2019 Numerical investigations of two-phase finger-like instabilities. Comput. Fluids 206, 104585.Google Scholar
Clark, A.H., Petersen, A.J., Kondic, L. & Behringer, R.P. 2015 Nonlinear force propagation during granular impact. Phys. Rev. Lett. 114 (14), 144502.Google Scholar
Crowl, D.A. 2003 Understanding Explosions. Wiley.CrossRefGoogle Scholar
Eckhoff, R.K. 2009 Dust explosion prevention and mitigation, status and developments in basic knowledge and in practical application. Intl J. Chem. Engng 2009, 112.CrossRefGoogle Scholar
Felice, R.D. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Fernandez-Godino, M.G., Ouellet, F., Haftka, R.T. & Balachandar, S. 2019 Early time evolution of circumferential perturbation of initial particle volume fraction in explosive cylindrical multiphase dispersion. J. Fluids Engng 141 (9), 091302.CrossRefGoogle Scholar
Formenti, Y., Druitt, T. & Kelfoun, K. 2003 Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull. Volcanol. 65, 587605.CrossRefGoogle Scholar
Frost, D.L. 2018 Heterogeneous/particle-laden blast waves. Shock Waves 28, 439449.CrossRefGoogle Scholar
Frost, D.L., Goroshin, S. & Zhang, F. 2010 Jet formation during explosive particle dispersal. In International Symposium on Military Aspects of Blast and Shock.Google Scholar
Frost, D.L., Grégoire, Y., Petel, O., Goroshin, S. & Zhang, F. 2012 Particle jet formation during explosive dispersal of solid particles. Phys. Fluids. 24, 091109.CrossRefGoogle Scholar
Han, P., Xue, K. & Bai, C. 2021 Explosively driven dynamic compaction of granular media. Phys. Fluids 33, 023309.CrossRefGoogle Scholar
Huang, J.Y., Lu, L., Fan, D., Sun, T., Fezzaa, K., Xu, S.L., Zhu, M.H. & Luo, S.N. 2016 Heterogeneity in deformation of granular ceramics under dynamic loading. Scr. Materialia 111, 114118.Google Scholar
Kandan, K., Khaderi, S.N., Wadley, H. & Deshpande, V. 2017 Surface instabilities in shock loaded granular media. J. Mech. Phys. Solids 109, 217240.CrossRefGoogle Scholar
Klemens, R., Gieras, M. & Kaluzny, M. 2007 Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions. J. Loss Prev. Process. Ind. 20, 664674.CrossRefGoogle Scholar
Koneru, R.B., Rollin, B., Durant, B., Ouellet, F. & Balachandar, S. 2020 A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids 32, 093301.CrossRefGoogle Scholar
Kun, X., Kaiyuan, D., Xiaoliang, S., Yixiang, G. & Chunhua, B. 2018 Dual hierarchical particle jetting of a particle ring undergoing radial explosion. Soft Matt. 14, 4422–4431.Google Scholar
Kuranz, C.C., et al. 2018 How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun. 9, 1564.CrossRefGoogle Scholar
Li, J., Xue, K., Zeng, J., Tian, B. & Guo, X. 2022 Shock-induced interfacial instabilities of granular media. J. Fluid Mech. 930, A22.CrossRefGoogle Scholar
Liu, X.D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200212.CrossRefGoogle Scholar
Loiseau, J., Pontalier, Q., Milne, A.M., Goroshin, S. & Frost, D.L. 2018 Terminal velocity of liquids and granular materials dispersed by a high explosive. Shock Waves 28, 473487.CrossRefGoogle Scholar
Majmudar, T. & Behringer, R. 2005 Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 10791082.CrossRefGoogle ScholarPubMed
Marjanovic, G., Hackl, J., Shringarpure, M., Annamalai, S. & Balachandar, S. 2018 Inviscid simulations of expansion waves propagating into structured particle beds at low volume fractions. Phys. Rev. Fluids 3, 094301.CrossRefGoogle Scholar
Milne, A.M., Floyd, E., Longbottom, A.W. & Taylor, P. 2014 Dynamic fragmentation of powders in spherical geometry. Shock Waves 24, 501513.CrossRefGoogle Scholar
Mo, H., Lien, F.S., Zhang, F. & Cronin, D.S. 2019 A mesoscale study on explosively dispersed granular material using direct simulation. J. Appl. Phys. 125, 214302.CrossRefGoogle Scholar
Morrison, F.A. 1970 Transient gas flow in a porous column. Ind. Engng Chem. Fundam. 11, 191197.CrossRefGoogle Scholar
Osnes, A.N., Vartdal, M. & Reif, B.P. 2017 Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell. Shock Waves 28, 451–461.Google Scholar
Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids. Shock Waves. 28, 489–511.Google Scholar
Posey, J.W., Roque, B., Guhathakurta, S. & Houim, R.W. 2021 Mechanisms of prompt and delayed ignition and combustion of explosively dispersed aluminum powder. Phys. Fluids 33, 113308.CrossRefGoogle Scholar
Richard, S., Favrie, N., Petitpas, F., Lallemand, M.-H. & Gavrilyuk, S.L. 2010 Modelling dynamic and irreversible powder compaction. J. Fluid Mech. 664, 348396.Google Scholar
Rodriguez, V., Saurel, R., Jourdan, G. & Houas, L. 2013 Solid-particle jet formation under shock-wave acceleration. Phys. Rev. E 88, 063011.CrossRefGoogle ScholarPubMed
Rodriguez, V., Saurel, R., Jourdan, G. & Houas, L. 2014 External front instabilities induced by a shocked particle ring. Phys. Rev. E 90, 043013.CrossRefGoogle ScholarPubMed
Rogue, X., Rodriguez, G., Haas, J.F. & Saurel, R. 1998 Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8, 2945.CrossRefGoogle Scholar
Sundaresan, S., Ozel, A. & Kolehmainen, J. 2018 Toward constitutive models for momentum, species, and energy transport in gas–particle flows. Annu. Rev. Chem. Biomol. Engng 9, 61–81.Google ScholarPubMed
Tadanaga, T., Clark, A.H., Majmudar, T. & Kondic, L. 2018 Granular response to impact: topology of the force networks. Phys. Rev. E 97, 012906.Google Scholar
Tian, B., Zeng, J., Meng, B., Chen, Q. & Xue, K. 2020 Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system. J. Comput. Phys. 418, 109602.CrossRefGoogle Scholar
Wang, S., Gui, Q., Zhang, J., Gao, Y., Xu, J. & Jia, X. 2021 Theoretical and experimental study of bubble dynamics in underwater explosions. Phys. Fluids 33, 126113.CrossRefGoogle Scholar
Xu, T., Lien, F.S., Ji, H. & Zhang, F. 2013 Formation of particle jetting in a cylindrical shock tube. Shock Waves 23, 619634.CrossRefGoogle Scholar
Xue, K., Cui, H., Du, K., Shi, X., Gan, Y. & Bai, C. 2018 The onset of shock-induced particle jetting. Powder Technol. 336, 220229.CrossRefGoogle Scholar
Xue, K., Sun, L. & Bai, C. 2016 Formation mechanism of shock-induced particle jetting. Phys. Rev. E 94, 022903.CrossRefGoogle ScholarPubMed
Zhang, F., Ripley, R.C., Yoshinaka, A., Findlay, C.R., Anderson, J. & Rosen, B.V. 2015 Large-scale spray detonation and related particle jetting instability phenomenon. Shock Waves 25, 239254.CrossRefGoogle Scholar