Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:38:45.921Z Has data issue: false hasContentIssue false

Explicit Dirichlet–Neumann operator for water waves

Published online by Cambridge University Press:  24 October 2022

Didier Clamond*
Affiliation:
Université Côte d'Azur, CNRS UMR 7351, Laboratoire J. A. Dieudonné, Parc Valrose, 06108 Nice CEDEX 2, France
*
Email address for correspondence: [email protected]

Abstract

An explicit expression for the Dirichlet–Neumann operator for surface water waves is presented. For non-overturning waves, but without assuming small amplitudes, the formula is first derived in two dimensions, and subsequently extrapolated to higher dimensions and with a moving bottom. Although described here for water waves, this elementary approach could be adapted to many other problems having similar mathematical formulations.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Alazard, T. & Baldi, P. 2015 Gravity capillary standing water waves. Arch. Rat. Mech. Anal. 217, 741830.CrossRefGoogle Scholar
Alazard, T., Burq, N. & Zuily, C. 2012 On the Cauchy problem for gravity water waves. Invent. Math. 198, 71163.CrossRefGoogle Scholar
Andrade, D. & Nachbin, A. 2018 A three-dimensional Dirichlet–Neumann operator for water waves over topography. J. Fluid Mech. 845, 321345.CrossRefGoogle Scholar
Clamond, D. & Grue, J. 2001 A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447, 337355.CrossRefGoogle Scholar
Constantin, A. & Ivanov, R.I. 2019 Equatorial wave-current interactions. Commun. Math. Phys. 370, 148.CrossRefGoogle Scholar
Constantin, A., Ivanov, R.I. & Martin, C.-I. 2016 Hamiltonian formulation for wave-current interactions in stratified rotational flows. Arch. Rat. Mech. Anal. 221, 14171447.CrossRefGoogle Scholar
Craig, W. & Groves, M.D. 1994 Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367389.CrossRefGoogle Scholar
Craig, W. & Sulem, C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108, 7383.CrossRefGoogle Scholar
Craig, W., Guyenne, P. & Kalisch, H. 2005 Hamiltonian log-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Maths 58, 15871641.CrossRefGoogle Scholar
Craig, W., Guyenne, P., Nicholls, D.P. & Sulem, C. 2005 Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. A 461, 839873.Google Scholar
Dommermuth, D.G. & Yue, D.K.P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid. Mech. 184, 267288.CrossRefGoogle Scholar
Fazioli, C. & Nicholls, D.P. 2010 Stable computation of the functional variation of the Dirichlet–Neumann operator. J. Comput. Phys. 229, 906920.CrossRefGoogle Scholar
Fontelos, M.A., Lecaros, R., López-Ríos, J.C. & Ortega, J.H. 2017 Bottom detection through surface measurements on water waves. SIAM J. Control Optim. 55 (6), 38903907.CrossRefGoogle Scholar
Fructus, D. & Grue, J. 2007 An explicit method for the nonlinear interaction between water waves and variable and moving bottom topography. J. Comput. Phys. 222 (2), 720739.CrossRefGoogle Scholar
Fructus, D., Clamond, D., Grue, J. & Kristiansen, Ø. 2005 Efficient numerical model for three-dimensional gravity waves simulations. Part I: periodic domains. J. Comput. Phys. 205, 665685.CrossRefGoogle Scholar
Groves, M.D. & Horn, J. 2020 A variational formulation for steady surface water waves on a Beltrami flow. Proc. R. Soc. Lond. A 476 (2234), 20190495.Google Scholar
Iguchi, T. 2011 A mathematical analysis of tsunami generation in shallow water due to seabed deformation. Proc. R. Soc. Edin. 141, 551608.CrossRefGoogle Scholar
Isaacson, E. & Keller, H.B. 1994 Analysis of Numerical Methods. Dover.Google Scholar
Lannes, D. 2013 The Water Waves Problem. Math. Surveys and Monographs, vol. 188. American Mathematical Society.Google Scholar
Milne-Thomson, L.M. 2011 Theoretical Hydrodynamics, 5th edn. Dover Books on Physics. Dover.Google Scholar
Nicholls, D.P. & Reitich, F. 2001 A new approach to analyticty of Dirichlet–Neumann operators. Proc. R. Soc. Edin. 131, 14111433.CrossRefGoogle Scholar
Schäffer, H.A. 2008 Comparison of Dirichlet–Neumann operator expansions for nonlinear surface gravity waves. Coast. Engng. 55 (4), 288294.CrossRefGoogle Scholar
Wehausen, J.V. & Laitone, E.V. 1960 Surface waves. In Fluid Dynamics III, (ed. S. Flugge & C. Truesdell), Encyclopaedia of Physics, vol. IX, pp. 446–778. SpringerCrossRefGoogle Scholar
West, B.J., Brueckner, K.A., Janda, R.S., Milder, D.M. & Milton, R.L. 1987 A new numerical method for surface hydrodynamics. J. Geophys. Res. 92, 1180311824.CrossRefGoogle Scholar
Wilkening, J. & Vasan, V. 2015 Comparison of five methods of computing the Dirichlet–Neumann operator for the water wave problem. In AMS Special Session on Nonlinear Wave and Integrable Systems (ed. C.W. Curtis, A. Dzhamay, & W.A. Hereman), Contemporary Mathematics, vol. 635, pp. 175–210. American Mathematical Society.CrossRefGoogle Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 19901994.Google Scholar