Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T18:46:47.039Z Has data issue: false hasContentIssue false

Experiments on the lift and drag of spheres suspended in a Poiseuille flow

Published online by Cambridge University Press:  28 March 2006

R. Eichhorn
Affiliation:
Department of Aerospace and Mechanical Sciences, Princeton University, Princeton, N.J.
S. Small
Affiliation:
Department of Aerospace and Mechanical Sciences, Princeton University, Princeton, N.J. Present address: Bureau of the Budget, Washington, D.C.

Abstract

An experimental investigation of the fluid dynamic forces on spheres suspended in a Poiseuille flow was performed. Small spheres of polystyrene, nylon, and Lucite, having diameters ranging from 0.061 in. to 0.126 in. were suspended in Poiseuille flows in a 0.419 in. diameter tube. Variations in particle size and density, the fluid properties, and the angle of inclination of the tube, resulted in a sphere Reynolds number (based on particle diameter and approach velocity) ranging from 80 to 250. The results are presented as curves which include the coefficients of lift and drag, and the dimensionless rotation speed plotted versus Reynolds number and a dimensionless shear parameter.

Type
Research Article
Copyright
© 1964 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, H. & Happel, J. 1958 J. Fluid Mech. 4, 195.
Faxen, H. 1922 Arkiv f. Math., Astro. och Fysik, 17, no. 27
Fayon, A. M. & Happel, J. 1960 A.I.Ch.E.J. 6, 55.
Fidleris, V. & Whitmore, R. L. 1961 Brit. J. Appl. Phys. 12, 490.
Haberman, W. L. & Sayre, R. M. 1958 David Taylor Model Basin, Rep. no. 1143.
Hall, I. M. 1956 J. Fluid Mech. 1, 142.
Happel, J. & Byrne, B. J. 1954 Indust. Engng Chem. 46, 1181.
Ladenburg, R. 1907 Ann. Phys. (Ser. 4), 23, 447.
Lamb, H. 1932 Hydrodynamics, 6th ed. New York: Dover.
Lee, H. M. 1947 A Modification of Stokes' Law to Account for Boundary Influence, M.S. Thesis, State University of Iowa.
Lighthill, M. J. 1957 J. Fluid Mech. 2, 493.
McNown, J. S., Lee, H. M., McPherson, M. B. & Engez, S. M. 1948 Proc. 7th Inter. Cong. Appl. Mech. (London), 2, 17.
Oseen, C. W. 1910 Arkiv F. Math., Astro. och Fysik, 6, no. 29
Perry, J. H. 1950 Chemical Engineering Handbook, 3rd Ed. New York: McGraw-Hill.
Rubinow, S. I. & Keller, J. B. 1961 J. Fluid Mech. 11, 447.
Schlichting, H. 1960 Boundary Layer Theory, 4th Ed., p. 257. New York: McGraw-Hill.
Segré, G. & Silverberg, A. 1961 Nature, Lond., 189, 209.
Segré, G. & Silverberg, A. 1962a J. Fluid Mech. 14, 115.
Segré, G. & Silverberg, A. 1962b J. Fluid Mech. 14, 136.
Tsien, H. S. 1943 Quart. Appl. Math. 1, 130.
Wakiya, S. 1953 J. Phys. Soc. Japan, 8, 254.
Young, D. F. 1960 A.S.M.E. Paper 60-HYD-12.
Zierep, J. 1955 Z. f. Flugwiss, 3, 22.