Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T12:50:40.008Z Has data issue: false hasContentIssue false

Experiments on the flow past a circular cylinder at low Reynolds numbers

Published online by Cambridge University Press:  28 March 2006

D. J. Tritton
Affiliation:
Cavendish Laboratory, Cambridge

Abstract

Part I describes measurements of the drag on circular cylinders, made by observing the bending of quartz fibres, in a stream with the Reynolds number range 0·5-100. Comparisons are made with other experimental values (which cover only the upper part of this range) and with the various theoretical calculations.

Part II advances experimental evidence for there being a transition in the mode of the vortex street in the wake of a cylinder at a Reynolds number around 90. Investigations of the nature of this transition and the differences between the flows on either side of it are described. The interpretation that the change is between a vortex street originating in the wake and one originating in the immediate vicinity of the cylinder is suggested.

Type
Research Article
Copyright
© 1959 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, D. N. de G. & Southwell, R. V. 1955 Quart. J. Mech. Appl. Math. 8, 129.
Apelt, C. J. 1959 Rep. and Memo., Aero. Res. Counc., Lond. (To be published).
Bairstow, L., Cave, B. M. & Lang, E. D. 1923 Phil. Trans. A, 223, 383.
Birkhoff, G. 1953 J. Appl. Phys. 24, 98.
Goldstein, S. (ed.) 1938 Modern Developments in Fluid Dynamics. Oxford University Press.
Hollingdale, S. H. 1940 Phil. Mag. (7), 29, 209.
Homann, F. 1936 Forsch. Geb. IngWes. 7, 1.
Kaplun, S. 1957 J. Math. Mech. 6, 595.
Kawaguti, M. 1953 J. Phys. Soc. Japan, 8, 747.
Kovasznay, L. S. G. 1949 Proc. Roy. Soc. A, 198, 174.
Lamb, H. 1911 Phil. Mag. (6), 21, 112.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Nisi, H. & Porter, A. W. 1923 Phil. Mag. (6), 46, 754.
Phillips, O. M. 1956 J. Fluid. Mech. 1, 607.
Prandtl, L. (ed.) 1923 Ergebn. Aerodyn. VersAnst. Göttingen, 2, 23.
Proudman, I. & Pearson, J. R. A. 1957 J. Fluid Mech. 2, 237.
Relf, E. F. 1913 Tech. Rep. and Memo., Adv. Comm. Aero. (A.R.C.), Lond., no. 102.
Roshko, A. 1954 Rep. Nat. Adv. Comm. Aero., Wash., no. 1191.
Schmidt, E. 1934 Proc. 4th Int. Congr. App. Mech. (Camb.), p. 92.
Schmidt, E. & Beckmann, W. 1930 Tech. Mech. Thermodynam. 1, 341, 391.
Southwell, R. V. & Squire, H. B. 1934 Phil. Trans. A, 232, 27.
Taneda, S. 1956 J. Phys. Soc. Japan, 11, 302.
Taneda, S. 1958 J. Phys. Soc. Japan, 13, 418.
Thom, A. 1929 Rep. and Memo., Aero. Res. Coun., Lond., no. 1194.
Thom, A. 1933 Proc. Roy. Soc. A, 141, 651.
Tomotika, S. & Aoi, T. 1950 Quart. J. Mech. Appl. Math. 3, 140.
Tritton, D. J. 1959 Phil. Mag. (in the Press).
Tyler, E. 1931 Phil. Mag. (7), 11, 849.
Wieselsberger, C. 1921 Phys. Z. 22, 321.
Wieselsberger, C. 1922 Phys. Z. 23, 219.