Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T19:19:59.486Z Has data issue: false hasContentIssue false

Experiments on nearly homogeneous turbulent shear flow

Published online by Cambridge University Press:  29 March 2006

F. H. Champagne
Affiliation:
Department of Mechanics, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. Present address: Boeing Scientific Research Laboratories.
V. G. Harris
Affiliation:
Department of Mechanics, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
S. Corrsin
Affiliation:
Department of Mechanics, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

Abstract

With a transverse array of channels of equal widths but differing resistances, we have generated an improved approximation to spatially homogeneous turbulent shear flow. The scales continue to grow with downstream distance, even in a region where the mean velocity gradient and one-point turbulence moments (component energies and shear stress) have attained essentially constant values. This implies asymptotic non-stationarity in the basic Eulerian frame convected with the mean flow, behaviour which seems to be inherent to homogeneous turbulent shear flow.

Two-point velocity correlations with space separation and with space-time separation yield characteristic departures from isotropy, including clear ‘upstream–downstream’ unsymmetries which cannot be classified simply as axis tilting of ellipse-like iso-correlation contours.

The high wave-number structure is roughly locally isotropic although the turbulence Reynolds number based on Taylor ‘microscale’ and r.m.s. turbulent velocity is only 130. Departures from isotropy in the turbulent velocity gradient moments are measurable.

The approximation to homogeneity permits direct estimation of all components of the turbulent pressure/velocity-gradient tensor, which accounts for inter-component energy transfer and helps to regulate the turbulent shear stress. It is found that its principal axes are aligned with those of the Reynolds stress tensor. Finally, the Rotta (1951, 1962) linear hypothesis for intercomponent energy transfer rate is roughly confirmed.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakewell, H. P. 1966 An experimental investigation of the viscous sublayer in turbulent pipe flow. Thesis for Ph.D. degree, Penn State University.
Baldwin, L. V. & Mickelsen, W. R. 1962 J. Engng Mech. Div., Am. Soc. C.E. 88, 37 (Discussion, 151).
Batchelor, G. K. 1950 J. Aero. Sci. 17, 441.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Boussinesq, J. 1877 Essai sur la Théorie des Eaux Courantes. Mém. présentés par div. sav. à l'Acad. des Sci.Google Scholar
Bradshaw, P. 1967 Nat. Phys. Lab. Aero Rep. no. 1220.
Burgers, J. M. & Mitchner, M. 1953 Konink. Ned. Akad. v. Wet. B 15, 228 (part II, 383).
Chou, P. Y. 1945 Quart. J. Appl. Math. 3, 38.
Comte-Bellot, G. & Corrsin, S. 1970 Manuscript submitted to J. Fluid Mech.Google Scholar
Corrsin, S. 1949 J. Aero. Sci. 16, 757.
Corrsin, S. 1957 Proc. 1st Naval Hydro-Symp., Pub. 515. Natn. Acad. Sci./Natn. Res. Counc., 373.Google Scholar
Corrsin, S. 1958 N.A.C.A. Res. Memo RM 58B11.
Corrsin, S. 1963 Encyclopedia of Physics, vol. VIII/2. (Ed. S. Flügge and C. Truesdell.) Berlin: Springer-Verlag.
Craya, A. 1958 Publ. Sci. et Tech. du Min. de l'Air, no. 345.
Deissler, R. G. 1961 Phys. Fluids, 4, 1187.
Favre, A., Gaviglio, J. & Dumas, R. 1953 La Rech. Aéro. (32), 21.
Favre, A., Gaviglio, J. & Dumas, R. 1955 La Rech. Aéro. (48), 3 (see also J. Fluid Mech. 2, 313).
Favre, A., Gaviglio, J. & Dumas, R. 1958 J. Fluid Mech. 3, 344.
Favre, A., Gaviglio, J. & Dumas, R. 1967 Phys. Fluids Suppl. 10, II, S 138.
Fisher, M. J. & Davies, P. O. A. L. 1964 J. Fluid Mech. 18, 97.
Fox, J. 1964 Phys. Fluids, 7, 562.
Hasen, E. M. 1967 J. Fluid Mech. 29, 721.
Hinze, J. O. 1959 Turbulence. New York: McGraw-Hill.
von Kármán, Th. 1930 Nachr. Ges. Wiss., Göttingen, Math. Phys. Kl., 58 (see also N.A.C.A. TM 611).
Kellogg, R. M. 1965 Ph.D. dissertation, Johns Hopkins University.
Klebanoff, P. S. 1955 N.A.C.A. Rep. 1247.
Kolmogorov, 1941 C.R. Akad. Sci. U.R.S.S. 30, 301.
Landahl, M. 1967 J. Fluid Mech. 29, 441.
Laufer, J. 1951 N.A.C.A. Rep. 1053.
Lin, C. C. 1953 Quart. J. Appl. Math. 10, 295.
Lumley, J. L. 1965 Phys. Fluids, 8, 1056.
Lumley, J. L. 1967 Phys. Fluids, 10, 1405.
Moffatt, H. K. 1967 Atmospheric Turbulence and Radio Wave Propagation. Moscow: Publ. House ‘Nauka’.
Nee, V. W. & Kovasznay, L. S. G. 1969 Phys. Fluids, 12, 473.
Nevzgljadov, V. 1945 J. Phys. (USSR), 9, 235.
Pearson, J. R. A. 1959 J. Fluid Mech. 5, 274.
Phillips, O. M. 1967 J. Fluid Mech. 27, 131.
Prandtl, L. 1925 Z. angew. Math. Mech. 5, 136.
Prandtl, L. 1942 Z. angew. Math. Mech. 22, 241.
Reis, F. B. 1952 Ph.D. dissertation, Mass. Inst. of Tech.
Reynolds, O. 1895 Phil. Trans. Roy Soc. Lond. A 186, 123.
Rose, W. G. 1966 J. Fluid Mech. 25, 97.
Rotta, J. C. 1951 Z. Phys. 129, 547 (I) and 131, 51 (II).
Rotta, J. C. 1962 Progress in Aeronautical Sciences, vol. 2. (Ed. by A. Ferri, D. Küchemann and L. H. G. Sterne.) Oxford: Pergamon.
de Saint-Venant, B. 1843 C. r. Séanc. Acad. Sci. 17, 1270.
Taylor, G. I. 1915 Phil. Trans. Roy. Soc. Lond. A 215, 1.
Taylor, G. I. 1932 Proc. Roy. Soc. A 135, 685.
Taylor, G. I. 1936 Proc. Roy. Soc. A 157, 537.
Taylor, G. I. 1938 Proc. Roy. Soc. A 164, 15.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tritton, D. J. 1967 J. Fluid Mech. 28, 433.
Uberoi, M. S. 1957 J. Appl. Phys. 28, 1165.
Uberoi, M. S. & Corrsin, S. 1953 N.A.C.A. Rep. 1142.
Wills, J. A. B. 1964 J. Fluid Mech. 20, 417.
Wyngaard, J. C. 1968 J. scient. Instrum. (J. Phys. E) ser. 2, 1, 1105.