Published online by Cambridge University Press: 26 April 2006
This paper reports a comprehensive set of hot-wire measurements of a round buoyant plume which was generated by forcing a jet of hot air vertically up into a quiescent environment. The boundary conditions of the experiment were measured, and are documented in the present paper in an attempt to sort out the contradictory mean flow results from the earlier studies. The ambient temperature was monitored to ensure that the facility was not stratified and that the experiment was conducted in a neutral environment. The axisymmetry of the flow was checked by using a planar array of sixteen thermocouples and the mean temperature measurements from these are used to supplement the hot-wire measurements. The source flow conditions were measured to ascertain the rate at which the buoyancy was added to the flow. The measurements conserve buoyancy within 10%. The results are used to determine balances of the mean energy and momentum differential equations. In the mean energy equation it is found that the vertical advection of energy is primarily balanced by the radial turbulent transport. In the mean momentum equation the vertical advection of momentum and the buoyancy force balance the radial turbulent transport. The buoyancy force is the second largest term in this balance and is responsible for the wider (and higher) velocity profiles in plumes as compared to jets. Budgets of the temperature variance and turbulent kinetic energy are also determined in which thermal and mechanical dissipation rates are obtained as the closing terms. Similarities and differences between the two balances are discussed. It is found that even though the direct effect of buoyancy in turbulence, as evidenced by the buoyancy production term, is substantial, most of the turbulence is produced by shear. This is in contrast to the mean velocity field where the effect of the buoyancy force is quite strong. Therefore, it is concluded that in a buoyant plume the primary effect of buoyancy on turbulence is indirect, and enters through the mean velocity field (giving larger shear production).