Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T16:52:21.429Z Has data issue: false hasContentIssue false

Experimental study on resonantly forced interfacial waves in a stratified circular cylindrical basin

Published online by Cambridge University Press:  14 June 2007

GEOFFREY W. WAKE
Affiliation:
School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia 6907, Australia
EMIL J. HOPFINGER
Affiliation:
LEGI, CNRS/INPG, Rue de la Piscine, BP 53, 38041, Grenoble, France
GREGORY N. IVEY
Affiliation:
School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia 6907, Australia

Abstract

Laboratory experiments have been performed on resonantly forced interfacial waves in a circular cylindrical basin containing a two-layer stratified fluid. The results of this shallow-water study exhibit a number of similarities to previous shallow-water studies performed in single-layer fluids, such as the generation of a large-amplitude response over a frequency bandwidth offset from the primary resonance, generation of a swirling mode at the observed resonant condition, and the significant contribution of higher harmonics. The two-layer experiments also produce results that are unique to stratified domains. In particular, the observed negative nonlinearity of the resonant condition at shallow water depth, mixing of the density interface resulting in detuning the forced response from the resonant condition, the enhanced role of viscous dissipation, and an alternative pathway for the nonlinear generation of higher-frequency waves when the layer depths are disparate. The results of this study are considered with regard to their implications for enclosed basins at the geophysical scale that are subject to near resonant forcing.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antenucci, J. P. & Imberger, J. 2003 The seasonal evolution of wind/internal wave resonance in Lake Kinneret. Limnol. Oceanogr. 48, 20552061.CrossRefGoogle Scholar
Boegman, L., Imberger, J., Ivey, G. N. & Antenucci, J. P. 2003 High-frequency waves in large stratified lakes. Limnol. Oceanogr. 48, 895919.CrossRefGoogle Scholar
Boegman, L., Ivey, G. N. & Imberger, J. 2005 The energetics of large-scale internal wave degeneration in lakes. J. Fluid Mech. 531, 159180.CrossRefGoogle Scholar
Chester, W. & Bones, J. A. 1968 Resonant oscillation of water waves. ii. Experiment. Proc. R. Soc. Lond. 306, 2330.Google Scholar
Dean, R. G. & Dalrymple, R. A. 1992 Water Wave Mechanics for Engineers and Scientists. World Scientific.Google Scholar
Faltinsen, O. M. & Timokha, A. N. 2001 An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167200.CrossRefGoogle Scholar
Faltinsen, O. M. & Timokha, A. N. 2002 Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech. 470, 319357.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F., Lukovsky, I. A. & Timokha, A. N. 2000 Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201234.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F. & Timokha, A. N. 2003 Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 142.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F. & Timokha, A. N. 2005 a Classification of three-dimensional sloshing in a square-base tank with finite depth. J. Fluids Struct. 20, 81103.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F. & Timokha, A. N. 2005 b Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes. J. Fluid Mech. 523, 199218.CrossRefGoogle Scholar
Gavrilyuk, I., Lukovsky, I. A. & Timokha, A. N. 2000 A multimodal approach to nonlinear sloshing in a circular cylindrical tank. Hybrid Meth. Engng 2, 463483.Google Scholar
Grue, J., Jensen, P., Rusas, P. & Sveen, J. K. 2000 Breaking and broadening of internal solitary waves. J. Fluid Mech. 413, 181217.CrossRefGoogle Scholar
Hayfeh, A. H. & Mook, D. T. 1979 Nonlinear Oscillations. Wiley.Google Scholar
Holyer, J. Y. 1979 Large amplitude progressive interfacial waves. J. Fluid Mech. 93, 433448.CrossRefGoogle Scholar
Horn, D. A., Imberger, J. & Ivey, G. N. 2001 The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434, 181207.CrossRefGoogle Scholar
Ibrahim, R. A. 2005 Liquid Sloshing Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Imberger, J. 1998 Flux paths in a stratified lake – a review. In Physical Processes in Lakes and Oceans. AGU Press.CrossRefGoogle Scholar
La Rocca, M., Sciortino, G. & Boniforti, M. A. 2002 Interfacial gravity waves in a two-fluid system. Fluid Dyn. Res. 30, 3166.CrossRefGoogle Scholar
La Rocca, M., Sciortino, G. & Adduce, C. 2005 Experimental and theoretical investigation on the sloshing of a two-fluid system with free surface. Phys. Fluids 3, 983994.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Münnich, M., Wüest, A. & Imboden, D. M. 1992 Observations of the second vertical mode of the internal seiche in an alpine lake. Limnol. Oceanogr. 37, 17051719.CrossRefGoogle Scholar
Miles, J. W. 1984 Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 1531.CrossRefGoogle Scholar
Miles, J. W. 1994 Faraday waves: rolls versus squares. J. Fluid Mech. 269, 353371.CrossRefGoogle Scholar
Mortimer, C. H. 1974 Lake hydrodynamics. Mitt. Intl Verein. Limnol. 27, 124197.Google Scholar
Mysak, L. A., Salvadé, G., Hutter, K. & Scheiwiller, T. 1985 Topographic waves in a stratified basin with application to the lake of Lugano. Phil. Trans. R. Soc. Lond. A 316, 155.Google Scholar
Ockendon, J. R. & Ockendon, H. 1973 Resonant surface waves. J. Fluid. Mech 59, 397413.CrossRefGoogle Scholar
Royon-Lebeaud, A., Hopfinger, E. J. & Cartellier, A. 2007 Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech. 577, 467494.CrossRefGoogle Scholar
Ruddick, B. R. & Shirtcliffe, T. G. L. 1979 Data for double diffusers: physical properties of aqueous salt–sugar solutions. Deep-Sea Res. 26, 775787.CrossRefGoogle Scholar
Thorpe, S. A. 1968 On standing internal gravity waves of finite amplitude. J. Fluid Mech. 32, 489528.CrossRefGoogle Scholar
Thorpe, S. A. 1971 Asymmetry of the internal seiche in Loch Ness. Nature 231, 306308.CrossRefGoogle Scholar
Thorpe, S. A. 1974 Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J. Fluid Mech. 63, 509527.CrossRefGoogle Scholar
Thorpe, S. A. 1978 On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech. 85, 731.CrossRefGoogle Scholar
Troy, C. D. & Koseff, J. R. 2005 The instability and breaking of long internal waves. J. Fluid Mech. 543, 107136.CrossRefGoogle Scholar
Wake, G. W., Ivey, G. N. & Imberger, J. 2005 The temporal evolution of baroclinic basin-scale waves in a rotating circular basin. J. Fluid Mech. 523, 367392.CrossRefGoogle Scholar