Published online by Cambridge University Press: 10 April 1999
Steady-state velocity and orientation distributions of sedimenting fibres were measured as a function of particle concentration and aspect ratio. Two different regimes of sedimentation were clearly identified. For dilute suspensions, the fibres tend to align in the direction of gravity with occasional flipping and clump together to form packets. In this regime, the vertical mean sedimentation speed is not hindered and can be larger than the Stokes' velocity of an isolated vertical fibre. Its scaling is a complex function of particle volume fraction and aspect ratio. As the concentration is increased, the fibres still tend to orient in the direction of gravity. The mean velocity becomes hindered and scales with particle volume fraction. The velocity fluctuations were found to be large and anisotropic. They were found to increase with increasing volume fraction. A similar substantial anisotropy of the orientation distribution was observed for all particle concentrations and aspect ratios studied.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.