Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T06:19:21.615Z Has data issue: false hasContentIssue false

Experimental study of higher-order moments in shear-driven boundary layers with rotation

Published online by Cambridge University Press:  25 February 2008

E. FERRERO
Affiliation:
Dip. di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, via Bellini 25/g, 15100, Alessandria, [email protected]
R. GENOVESE
Affiliation:
Centro E. Fermi, Compendio Viminale, 00184, Roma, Italy Dip. di Fisica Generale, Università di Torino, via Pietro Giuria 1, 10125, Torino, Italy Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
A. LONGHETTO
Affiliation:
Dip. di Fisica Generale, Università di Torino, via Pietro Giuria 1, 10125, Torino, Italy
M. MANFRIN
Affiliation:
Dip. di Fisica Generale, Università di Torino, via Pietro Giuria 1, 10125, Torino, Italy
L. MORTARINI
Affiliation:
Dip. di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, via Bellini 25/g, 15100, Alessandria, [email protected]

Abstract

The results of laboratory wall turbulence experiments on a shear-driven rotating boundary layer are presented. The experiments were carried out in the Turin University Laboratory rotating water tank. The flow was generated by changing the rotation speed of the platform and measured by means of particle image velocimetry. In order to analyse the influence of the rotation and of surface roughness, different cases were examined. Several rotation periods were considered. The measurements were performed both over a smooth surface and over a rough-to-smooth transition. Mean flows and the higher-order moments of the velocity probability density function are shown and discussed together with a comparison of the different experimental cases, theory and large-eddy simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech 422, 154.CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 1986 Random Data: Analysis and Measurement Procedures, 2nd Edition, 2nd edn. John Wiley & Sons.Google Scholar
Bernero, S. & Fiedler, H. E. 2000 Application of particle image velocimetry and a proper orthogonal decomposition to the study of jet in a counterflow. Exps. Fluids (supp.) pp. S274–S281.CrossRefGoogle Scholar
Bidokhti, A.A. & Tritton, D.J. 1992 The structure of a turbulent free shear leyer in a rotating fluid. J. Fluid Mech 241, 469502.CrossRefGoogle Scholar
Canuto, V. M. 1992 Turbulent convection with overshooting: Reynolds stress approach. Astrophys. J 392, 218318.CrossRefGoogle Scholar
Cheng, Y., Canuto, V. M. & Howard, A. M. 2005 Nonlocal convective pbl model based on third- and fourth-order moments. J. Atmos. Sci 62, 21892204.CrossRefGoogle Scholar
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1990 A numerical study of the turbulent ekman layer. J. Fluid Mech 213, 313348.CrossRefGoogle Scholar
Drobinski, P., Carlotti, P., Newsom, R.K., Banta, R. M., Foster, R. C. & Redelsperger, J. L. 2004 The structure of the near-neutral surface layer. J. Atmos. Sci 61, 699714.2.0.CO;2>CrossRefGoogle Scholar
Drobinski, P., Carlotti, P., Redelsperger, J. L., Banta, R. M. & Newsom, R. K. 2007 Numerical and experimental investigation of the neutral surface layer. J. Atmos. Sci 64, 137156.CrossRefGoogle Scholar
Ferrero, E. 2005 Third order moments for shear driven boundary layers. Boundary Layer Metary 116, 461466.CrossRefGoogle Scholar
Ferrero, E., Longhetto, A., Montabone, L., Mortarini, L., Manfrin, M., Sommeria, J., Didelle, H., Giraud, C. & Rizza, U. 2005 Physical simulation of neutral boundary layer in rotating tank. Il Nuovo Cimento 28 C, 117.Google Scholar
Ferrero, E. & Racca, M. 2004 The role of the nonlocal transport in modeling the shear-driven atmospheric boundary layer. J. Atmos. Sci 61, 14341445.2.0.CO;2>CrossRefGoogle Scholar
Fincham, A. M. & Spedding, G. R. 1997 Low-cost, high resolution dpiv for measurement in turbulent fluid flows. Exps. Fluids 23, 449462.CrossRefGoogle Scholar
Glendening, J. W. & Lin, C.-L. 2002 Large eddy simulation of internal boundary layers created by a change in surface roughness. J. Atmos. Sci 59, 16971711.2.0.CO;2>CrossRefGoogle Scholar
Gluhovsky, A. & Agee, E.M. 1994 A definitive approach to turbulence statistical studies in planetary boundary layers. J. Atmos. Sci 51, 16821690.2.0.CO;2>CrossRefGoogle Scholar
Grant, A. L. M. 1986 Observations of boundary layer structure made during the 1981 kontur experiment. Q. J. R. Met. Soc 112, 825841.CrossRefGoogle Scholar
Grant, A. L. M. 1992 The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci 49, 226239.2.0.CO;2>CrossRefGoogle Scholar
Gryanik, V.M. & Hartmann, J. 2005 A refinement of the millionshchikov quasi-normality hypothesis for convective boundary layer turbulence. J. Atmos. Sci 62, 26322638.CrossRefGoogle Scholar
Hanjalic, K. & Launder, B. E. 1972 A reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech 52, 609638.CrossRefGoogle Scholar
Hanjalic, K. & Launder, B. E. 1976 Contribution towards a reynolds-stress closure for low-reynolds-number turbulence. J. Fluid Mech 74, 593610.CrossRefGoogle Scholar
Hartmann, J., Albers, F., Argentini, S., Bochert, A., Bonate, U., Cohrs, W., Conidi, A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke, L., Lupkes, C., Maixner, U., Mastrantonio, G., Ravegnani, F., Reuter, A., Trivellone, G. & Viola, A. 1999 Arctic radiation and turbulence interaction study (artist). reports on polar research. Tech. Rep. 305. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven.Google Scholar
Hunt, J. C. R. & Carlotti, P. 2001 Statistical structure at the wall of the high reynolds number turbulent boundary layer. Flow, Turbulence, Combust 66, 453475.CrossRefGoogle Scholar
Khurshudyan, L., Snyder, L. H. & Nekrasov, I. V. 1981 Flow and dispersion of pollutants over two- dimensional hills: Summary report on joint soviet-american study. Rep. No. EPA-600/4-81-067, p. 131.Google Scholar
Lenschow, D.H., Mann, J. & Kristensen, L. 1994 How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Ocean. Technol 11, 661673.2.0.CO;2>CrossRefGoogle Scholar
Lesieur, M. 1997 Turbulence in Fluids. Kluwer.CrossRefGoogle Scholar
Lin, C. L., McWilliams, J. C., Moeng, C. H. & Sullivan, P. P. 1996 Coherent structures in a neutrally-stratified planetary boundary layer. Phys. Fluids 8, 26262639.CrossRefGoogle Scholar
Losch, M. 2004 On the validity of the millionshchikov quasi-normality hypothesis for open-ocean deep convection. Geophys. Res. Lett 31, L23301.CrossRefGoogle Scholar
Mason, P. J. & Sykes, R. I. 1980 A two dimensional numerical study of horizontal roll vortices in the neutral atmospheric boundary layer. Q. J. R. Met. Soc 106, 351366.Google Scholar
Mason, P. J. & Thomson, D. J. 1987 Large-eddy simulation of the neutral-static-stability planetary boundary layer. Q. J. R. Met. Soc 113, 413443.CrossRefGoogle Scholar
Maurizi, A. 2006 On the dependence of third- and fourth-order moments on stability in the turbulent boundary layer. Nonlin. Proc. Geophys 13, 119123.CrossRefGoogle Scholar
Millikan, C.M. 1938 A critical discussion of turbulent flows in channels and circular tubes. Proc. Fifth International Congress on Applied Mechanics, pp. 386–392.Google Scholar
Moeng, C.-H & Sullivan, P. P. 1994 A comparison of shear and buoyancy driven planetary boundary layer flow. J. Atmos. Sci 51, 9991022.2.0.CO;2>CrossRefGoogle Scholar
Monin, A. & Yaglom, A. 1971 Statistical Fluid Mechanics, vol.1. MIT Press.Google Scholar
Nicholls, S. & Readings, C. J. 1979 Aircraft observations of the structure of the lower boundary layer over the sea. Q. J. R. Met. Soc 105, 785802.CrossRefGoogle Scholar
Ohba, R., Hara, T., Nakamura, S., Ohya, Y. & Uchida, T. 2002 Gas diffusion over an isolated hill under neutral, stable and unstable conditions. Atmos. Environ 36, 56975707.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Prasad, A. K., Adrian, R. J., Landreth, C. C. & Offutt, P. W. 1992 Effect of resolution on the speed and accuracy of particle image velocimetry interrogations. Exps. Fluids 13, 105116.CrossRefGoogle Scholar
Qian, M. W., Longhetto, A., Cassardo, C., Giraud, C., Hong, Z.X., Luo, W.D. & Zhao, Y.J. 2000 Heat energy balance in the convective atmospheric boundary layer at Xianghe (Beijing area), China. J. Atmos. Sci 57, 38813890.2.0.CO;2>CrossRefGoogle Scholar
Raffel, M., Willert, C. E. & Kompenhans, J. 1998 Particle Image Velocimetry, a Practical Guide. Springer.CrossRefGoogle Scholar
Rao, K. S., Wyngaard, J. C. & Coté, O. R. 1973 The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness. J. Atmos. Sci 11, 738746.Google Scholar
Raupach, M. R., Coppin, P. A. & Legg, B. J. 1986 Experiments on scalar dispersion within a plant canopy, part i: the turbulence structure. Boundary Layer Met 35, 2152.CrossRefGoogle Scholar
Rizza, U., Gioia, G., Mangia, C. & Marra, G. P. 2003 Development of a grid-dispersion model in a large-eddy-simulation-generated pbl. Il Nuovo Cimento 26C 3, 297309.Google Scholar
Tampieri, F., Maurizi, A. & Alberghi, S. 2000 Lagrangian models of turbulent dispersion in the atmospheric boundary layer. Proc. Ingegneria del Vento in Italia 2000, pp. 37–50.Google Scholar
Tarbouriech, L., Didelle, H. & Renouard, D. 1997 Time-series piv measurements in a very large rotating tank. Exps. Fluids 23, 438440.CrossRefGoogle Scholar
Tritton, D.J. 1988 Physical Fluid Dynamics. Oxford University Press.Google Scholar
Zanoun, E., Durst, F. & Nagib, H. 2003 Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids 15, 30793089.CrossRefGoogle Scholar
Zeman, O. 1981 Progress in the modeling of planetary boundary-layers. Annu. Rev. Fluid Mech 13, 253272.CrossRefGoogle Scholar
Zilitinkevich, S. S., Gryanik, V. M., Lykossov, V. N. & Mironov, D. V. 1999 Third-order transport and nonlocal turbulence closures for convective boundary layers. J. Atmos. Sci 56, 34633477.2.0.CO;2>CrossRefGoogle Scholar