Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T21:59:44.565Z Has data issue: false hasContentIssue false

Experimental observation of viscoelastic fluid–structure interactions

Published online by Cambridge University Press:  26 January 2017

Anita A. Dey
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
Yahya Modarres-Sadeghi
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
Jonathan P. Rothstein*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
*
Email address for correspondence: [email protected]

Abstract

It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices. Here, we show for the first time that fluid–structure interactions can also be observed when the fluid is viscoelastic. For viscoelastic fluids, a flexible structure can become unstable in the absence of fluid inertia, at infinitesimal Reynolds numbers, due to the onset of a purely elastic flow instability. Nonlinear periodic oscillations of the flexible structure are observed and found to be coupled to the time-dependent growth and decay of viscoelastic stresses in the wake of the structure.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosi, D. & Preziosi, L. 2000 Modeling injection molding processes with deformable porous preforms. SIAM J. Appl. Maths 61 (1), 2242.Google Scholar
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195222.CrossRefGoogle Scholar
Beer, F. P., Johnston, E. R. Jr, Dewolf, J. T. & Mazurek, D. 2014 Mechanics of Materials. McGraw-Hill Education.Google Scholar
Bhardwaj, A., Miller, E. & Rothstein, J. P. 2007 Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. J. Rheol. 51 (4), 693719.CrossRefGoogle Scholar
Blevins, R. D. 1990 Flow-Induced Vibration. Krieger Pub. Co.Google Scholar
Bourguet, R., Modarres-Sadeghi, Y., Karniadakis, G. E. & Triantafyllou, M. S. 2011 Wake-body resonance of long flexible structures is dominated by counterclockwise orbits. Phys. Rev. Lett. 107 (13), 134502.Google Scholar
Chen, S. & Rothstein, J. P. 2004 Flow of a wormlike micelle solution past a falling sphere. J. Non-Newtonian Fluid Mech. 116 (23), 205234.Google Scholar
Dhakal, S. & Sureshkumar, R. 2016 Uniaxial extension of surfactant micelles: counterion mediated chain stiffening and a mechanism of rupture by flow-induced energy redistribution. ACS Macro Lett. 5, 108111.Google Scholar
Fuller, G. G. 1995 Optical Rheometry of Complex Fluids. Oxford University Press.CrossRefGoogle Scholar
Gladden, J. R. & Belmonte, A. 2007 Motion of a viscoelastic micellar fluid around a cylinder: flow and fracture. Phys. Rev. Lett. 98, 224501.Google Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355.Google Scholar
Handzy, N. Z. & Belmonte, A. 2004 Oscillatory rise of bubbles in wormlike micellar fluids with different microstructures. Phys. Rev. Lett. 92, 124501.Google Scholar
Jayaraman, A. & Belmonte, A. 2003 Oscillations of a solid sphere falling through a wormlike micellar fluid. Phys. Rev. E 67, 065301.Google Scholar
Larson, R. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31 (3), 213263.Google Scholar
Lauga, E. 2009 Life at high Deborah number. Europhys. Lett. 86 (6), 64001.Google Scholar
McKinley, G. H., Armstrong, R. C. & Brown, R. A. 1993 The wake instability in viscoelastic flow past confined circular cylinders. Phil. Trans. R. Soc. Lond. A 344 (1671), 265304.Google Scholar
McKinley, G. H., Pakdel, P. & Öztekin, A. 1996 Rheological and geometric scaling of purely elastic flow instabilities. J. Non-Newtonian Fluid Mech. 67, 1947.Google Scholar
Modarres-Sadeghi, Y., Païdoussis, M., Semler, C. & Grinevich, E. 2011 Experiments on vertical slender flexible cylinders clamped at both ends and subjected to axial flow. Phil. Trans. R. Soc. Lond. A 366, 12751296.Google Scholar
Mohammadigoushki, H. & Muller, S. J. 2016 Sedimentation of a sphere in wormlike micellar fluids. J. Rheol. 60 (4), 587601.Google Scholar
Moss, G. R. & Rothstein, J. P. 2010 Flow of wormlike micelle solutions past a confined circular cylinder. J. Non-Newtonian Fluid Mech. 165 (21), 15051515.Google Scholar
Païdoussis, M. 2004 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Academic.Google Scholar
Païdoussis, M. P. 1998 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic.Google Scholar
Païdoussis, M. P., Price, S. J. & de Langre, E. 2011 Fluid–Structure Interactions – Cross-Flow-Induced Instabilities, vol. 1. Cambridge University Press.Google Scholar
Rothstein, J. P. 2003 Transient extensional rheology of wormlike micelle solutions. J. Rheol. 47 (5), 12271247.Google Scholar
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.Google Scholar
Shaqfeh, E. S. G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28, 129185.Google Scholar
Shiang, A. H., Özkekin, A., Lin, J. C. & Rockwell, D. 2000 Hydroelastic instabilities in viscoelastic flow past a cylinder confined in a channel. Exp. Fluids 28 (2), 128142.Google Scholar
Takeuchi, K., Majima, Y., Hirata, K., Morishita, A., Hattori, M. & Sakakura, Y. 1990 Viscoelastic properties of middle ear effusions from pediatric otitis media with effusion and their relation to gross appearance. Europ. Arch. Oto-Rhino-Laryngol. 247 (1), 6062.Google Scholar
Williamson, C. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.Google Scholar