Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:14:41.990Z Has data issue: false hasContentIssue false

Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets

Published online by Cambridge University Press:  14 March 2011

DAVID J. C. DENNIS*
Affiliation:
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK
TIMOTHY B. NICKELS
Affiliation:
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK
*
Email address for correspondence: [email protected]

Abstract

Experimental measurements of the three-dimensional (3D) velocity field in a moderate Reynolds number zero pressure-gradient boundary layer are presented. The measurements are analysed to produce 3D correlations and conditional averaging techniques are used to further elucidate the underlying structure. The results show clear evidence of vortex-packet-type structures and shed new light on the detailed 3D structure of such packets in a real zero pressure-gradient boundary layer.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13, 131156.CrossRefGoogle Scholar
Bernard, P. S. & Wallace, J. M. 2002 Turbulent Flow: Analysis, Measurement and Prediction. John Wiley and Sons.Google Scholar
Blackwelder, R. 1977 On the role of phase information in conditional sampling. Phys. Fluids 20 (10), S232S242.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Clauser, F. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.CrossRefGoogle Scholar
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.CrossRefGoogle Scholar
Elsinga, G. E., Adrian, R. J., van Oudheusden, B. W. & Scarano, F. 2010 Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech. 644, 3560.CrossRefGoogle Scholar
Elsinga, G. E., Kuik, D. J., van Oudheusden, B. W. & Scarano, F. 2007 Investigation of the three-dimensional coherent structures in a turbulent boundary layer with tomographic-PIV. In Proc. 45th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 811.Google Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2006 Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fluids 18, 055105.CrossRefGoogle Scholar
Haidari, A. H. & Smith, C. R. 1994 The generation and regeneration of single hairpin vortices. J. Fluid Mech. 277, 135162.CrossRefGoogle Scholar
Hayakawa, M. 1994 Vorticity-based eduction of large-scale structures in turbulent shear flows. Appl. Sci. Res. 53, 203225.CrossRefGoogle Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162, 339.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous and statistical correlation. J. Fluid Mech. 155, 441.CrossRefGoogle Scholar
Ong, L. & Wallace, J. M. 1998 Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J. Fluid Mech. 367, 291.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Stanislas, M., Perret, L. & Foucaut, J.-M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proc. 2nd Midwestern Conf. Fluid Mech., pp. 118. Ohio State University.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Van Doorne, C. W. H. 2004 Stereoscopic PIV on transition in pipe flow. PhD thesis, Delft University of Technology.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpins in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar