Published online by Cambridge University Press: 29 March 2006
The stability of the laminar flow in a rectangular channel with aspect ratio 1:8 was investigated experimentally, with and without artificial excitation. The critical Reynolds number based on the hydraulic diameter and the average velocity was found to be 2600. Behaviour of damped and growing waves, using artificial excitation, was examined in detail. In particular the progress of growing disturbances was followed. Breaking was found to be the ultimate fate of a growing wave. Spectra of growing and damped waves were also obtained. Measurements were made for wavelengths, wave speeds and amplification or damping rates. The neutral stability boundary in the αr, R plane was determined. In the damped region, comparison of several aspects of the behaviour of the measured disturbances with the plane Poiseuille theory for spatial decay yielded good agreement.
Three-dimensionality and non-linear subcritical instability were briefly examined. Neutral subcritical waves at low Reynolds numbers appeared possible when the exciter amplitude was quadrupled.
The possible bearings of the present study on the stability of plane Poiseuille flow are suggested.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.