Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T19:07:00.920Z Has data issue: false hasContentIssue false

Experimental investigation of the vortex breakdown in a lean premixing prevaporizing burner

Published online by Cambridge University Press:  04 March 2015

E. Canepa*
Affiliation:
DIME, Universitá degli Studi di Genova, Genoa, I-16145, Italy
A. Cattanei
Affiliation:
DIME, Universitá degli Studi di Genova, Genoa, I-16145, Italy
D. Lengani
Affiliation:
DIME, Universitá degli Studi di Genova, Genoa, I-16145, Italy
M. Ubaldi
Affiliation:
DIME, Universitá degli Studi di Genova, Genoa, I-16145, Italy
P. Zunino
Affiliation:
DIME, Universitá degli Studi di Genova, Genoa, I-16145, Italy
*
Email address for correspondence: [email protected]

Abstract

The spiral vortex breakdown has been experimentally studied in the flow field generated by a lean premixing prevaporizing (LPP) combustor model. The vortex breakdown structures are characterized by a solid-body rotation. Hence, phase-locked laser Doppler velocimeter measurements, performed in a meridional plane, have allowed reconstruction of the periodic velocity and Reynolds stress fields within a time period and in a relative cylindrical frame of reference. Then, the turbulent kinetic energy (TKE) production term has been computed. The velocity distribution analysis indicates that a spiral vortex core wraps around an inner reverse flow zone. Both are characterized by a precessing motion. Then, the main contributions to the TKE production have been identified together with their spatial locations. Their distribution indicates that the maxima are placed in two regions: one located between the inner reverse flow and the spiral vortex and the second between the spiral vortex core and the external nearly quiescent fluid. In the latter, the TKE production term distributions have the features of a Kelvin–Helmholtz-like instability. In the former, the TKE production seems to be related to a Kelvin–Helmholtz-like instability only at the interface between the bubble and the spiral vortex core.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billant, P., Chomaz, J. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.CrossRefGoogle Scholar
Brücker, C. 1993 Study of vortex breakdown by particle tracking velocimetry (PTV). Exp. Fluids 14 (1–2), 133139.Google Scholar
Brücker, C. & Althaus, W. 1992 Study of vortex breakdown by particle tracking velocimetry (PTV). Exp. Fluids 13 (5), 339349.Google Scholar
Cala, C. E., Fernandes, E. C., Heitor, M. V. & Shtork, S. I. 2006 Coherent structures in unsteady swirling jet flow. Exp. Fluids 40 (2), 267276.Google Scholar
Canepa, E., Di Martino, P., Formosa, P., Ubaldi, M. & Zunino, P. 2006 Unsteady aerodynamics of an aeroengine double swirler lean premixing prevaporizing burner. Trans. ASME J. Engng Gas Turbines Power 128 (1), 2939.CrossRefGoogle Scholar
Chao, Y. C., Leu, J. H., Hung, Y. F. & Lin, C. K. 1991 Downstream boundary effects on the spectral characteristics of a swirling flowfield. Exp. Fluids 10 (6), 341348.Google Scholar
Escudier, M. P. & Zehnder, N. 1982 Vortex-flow regimes. J. Fluid Mech. 115, 105121.CrossRefGoogle Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20 (9), 13851400.CrossRefGoogle Scholar
Froud, D., O’doherty, T. & Syred, N. 1995 Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust. Flame 100 (3), 407412.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J.-M. 2003a Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J.-M. 2003b Instability mechanisms in swirling flows. Phys. Fluids 15 (9), 26222639.Google Scholar
Grosjean, N., Graftieaux, L., Michard, M., Hübner, W., Tropea, C. & Volkert, J. 1997 Combining LDA and PIV for turbulence measurements in unsteady swirling flows. Meas. Sci. Technol. 8 (12), 15231532.Google Scholar
Hussain, A. & Reynolds, W. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.Google Scholar
Khoo, B. C., Yeo, K. S., Lim, D. F. & He, X. 1997 Vortex breakdown in an unconfined vortical flow. Exp. Therm. Fluid Sci. 14 (2), 131148.CrossRefGoogle Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10 (1), 221246.Google Scholar
Liang, H. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.Google Scholar
Litvinov, I. V., Shtork, S. I., Kuibin, P. A., Alekseenko, S. V. & Hanjalic, K. 2013 Experimental study and analytical reconstruction of precessing vortex in a tangential swirler. Intl J. Heat Fluid Flow 42, 251264.Google Scholar
Lucca-Negro, O. & O’doherty, T. 2001 Vortex breakdown: a review. Prog. Energy Combust. Sci. 27 (4), 431481.Google Scholar
Martinelli, F., Cozzi, F. & Coghe, A. 2012 Phase-locked analysis of velocity fluctuations in a turbulent free swirling jet after vortex breakdown. Exp. Fluids 53 (2), 437449.Google Scholar
Midgley, K., Spencer, A. & McGuirk, J. J. 2005 Unsteady flow structures in radial swirler fed fuel injectors. Trans. ASME J. Engng Gas Turbines Power 127 (4), 755764.Google Scholar
Oberleithner, K., Paschereit, C. O., Seele, R. & Wygnanski, I. 2012 Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA J. 50 (7), 14371452.Google Scholar
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.Google Scholar
Panda, J. & McLaughlin, D. K. 1994 Experiments on the instabilities of a swirling jet. Phys. Fluids 6 (1), 263276.Google Scholar
Pruvost, J., Legrand, J., Legentilhomme, P. & Doubliez, L. 2000 Particle image velocimetry investigation of the flow-field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet. Exp. Fluids 29 (3), 291301.CrossRefGoogle Scholar
Qadri, U. A., Mistry, D. & Juniper, M. P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.Google Scholar
Ruith, M. R., Chen, P., Meiburg, E. & Maxworthy, T. 2003 Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331378.Google Scholar
Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (03), 545559.Google Scholar
Sarpkaya, T. 1995 Turbulent vortex breakdown. Phys. Fluids 7 (10), 23012303.CrossRefGoogle Scholar
Shen, Y.-M., Ng, C.-O. & Ni, H.-Q. 2003 3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel. Intl J. Heat Mass Transfer 46 (11), 20872093.Google Scholar
Shtork, S. I., Cala, C. E. & Fernandes, E. C. 2007 Experimental characterization of rotating flow field in a model vortex burner. Exp. Therm. Fluid Sci. 31 (7), 779788.Google Scholar
Simoni, D., Ubaldi, M. & Zunino, P. 2012 Loss production mechanisms in a laminar separation bubble. Flow Turbul. Combust. 89 (4), 547562.CrossRefGoogle Scholar
Sørensen, J. N., Naumov, I. V. & Okulov, V. L. 2011 Multiple helical modes of vortex breakdown. J. Fluid Mech. 683, 430441.CrossRefGoogle Scholar
Syred, N. 2006 A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32 (2), 93161.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar