Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T06:06:56.540Z Has data issue: false hasContentIssue false

Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence

Published online by Cambridge University Press:  25 February 2008

QUAN ZHOU
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
CHAO SUN
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
KE-QING XIA
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China

Abstract

We present direct multipoint velocity measurements of the two-dimensional velocity field in the central region of turbulent Rayleigh–Bénard convection. The local homogeneity and isotropy of the velocity field are tested using a number of criteria and are found to hold to an excellent degree. The properties of velocity circulation Γr are also studied. The results show that the circulation appears to be more effective in capturing the effect of local anisotropy than the velocity field itself. The distribution of Γr is found to depend on the scale r, reflecting strong intermittency. It is further found that the velocity circulation has the same anomalous scaling exponents as the longitudinal and transverse structure functions for low-order moments (p≲5), whereas, for high-order moments (p≳5), the anomalous scaling exponents for circulation are found to be systematically smaller than the scaling exponents of the longitudinal and transverse structure functions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arad, I., Biferale, L., Mazzitelli, I. & Procaccia, I. 1999a Disentangling scaling properties in anisotropic and inhomogeneous turbulence. Phys. Rev. Lett. 82, 50405043.CrossRefGoogle Scholar
Arad, I., Dhruva, B., Kurien, S., L'vov, V. S., Procaccia, I. & Sreenivasan, K. R. 1998 Extraction of anisotropic contributions in turbulent flows. Phys. Rev. Lett. 81, 53305333.Google Scholar
Arad, I., L'vov, V. S. & Procaccia, I. 1999b Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group. Phys. Rev. E 59, 67536765.Google ScholarPubMed
Benzi, R., Biferale, L., Struglia, M. V. & Tripiccione, R. 1997 Self-scaling properties of velocity circulation in shear flows. Phys. Rev. E 55, 37393742.Google Scholar
Biferale, L., Lohse, D., Mazzitelli, I. & Toschi, F. 2002 Probing structures in channel flow through SO(3) and SO(2) decomposition. J. Fluid Mech. 452, 3959.CrossRefGoogle Scholar
Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 22262229.CrossRefGoogle Scholar
Cao, N., Chen, S. & Sreenivasan, K. R. 1996 Properties of velocity circulation in three-dimensional turbulence. Phys. Rev. Lett. 76, 616619.CrossRefGoogle ScholarPubMed
Chen, S., Sreenivasan, K. R., Nelkin, M. & Cao, N. 1997 Refined similarity hypothesis for transverse structure functions in fluid turbulence. Phys. Rev. Lett. 79, 22532256.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1995 Temperature structure functions in turbulent convection at low Prandtl number. Europhys. Lett. 32, 413418.CrossRefGoogle Scholar
Grossmann, S., vonder Heydt, A. der Heydt, A. & Lohse, D. 1997 Scaling exponents in weakly anisotropic turbulence from the Navier-Stokes equation. J. Fluid Mech. 440, 381390.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Reeh, A. 1997 Different intermittency for longitudinal and transversal turbulent fluctuations. Phys. Fluids 9, 38173825.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Reeh, A. 1998 Scaling of the irreducible SO(3)-invariants of velocity correlations in turbulence. J. Statist. Phys. 93, 715724.CrossRefGoogle Scholar
Kadanoff, L. P. 2001 Turbulent heat flow: Structures and scaling. Phys. Today 54 (8), 3439.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301305.Google Scholar
Kurien, S., L'vov, V. S., Procaccia, I. & Sreenivasan, K. R. 2000 Scaling structure of the velocity statistics in atmospheric boundary layers. Phys. Rev. E 61, 407421.Google ScholarPubMed
Migdal, A. A. 1994 Loop equation and area law in turbulence. Intl J. Mod. Phys. A 9, 11971238.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Obukhov, A. M. 1959 The influence of hydrostatic forces on the structure of the temperature field turbulent flow. Dokl. Akad. Nauk. SSSR 125, 1246.Google Scholar
Qiu, X.-L. & Tong, P. 2001 Onset of coherent oscillations in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 87, 094501.CrossRefGoogle ScholarPubMed
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2003 Measured local heat transport in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 90, 074501.CrossRefGoogle ScholarPubMed
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measurements of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. E 70, 026308.Google ScholarPubMed
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Sreenivasan, K. R., Juneja, A. & Suri, A. K. 1995 Scaling properties of circulation in moderate-Reynolds-number turbulent wakes. Phys. Rev. Lett. 75, 433436.CrossRefGoogle ScholarPubMed
Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.Google Scholar
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.CrossRefGoogle ScholarPubMed
vande Water, W. de Water, W. & Herweijer, J. A. 1999 High-order structure functions of turbulence. J. Fluid Mech. 387, 337.Google Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar