Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T08:54:52.145Z Has data issue: false hasContentIssue false

Experimental evidence of velocity profile inversion in developing laminar flow using magnetic resonance velocimetry

Published online by Cambridge University Press:  25 July 2018

A. Reci
Affiliation:
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
A. J. Sederman*
Affiliation:
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
L. F. Gladden
Affiliation:
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
*
Email address for correspondence: [email protected]

Abstract

A discrepancy exists between the predictions of analytical solutions of approximate Navier–Stokes equations and numerical finite-difference solutions of the full Navier–Stokes equations regarding the development of laminar flow at the entrance to cylindrical pipes for Newtonian fluids. Starting from a uniform velocity profile at the entrance to the pipe, analytical solutions of approximate Navier–Stokes equations predict the velocity profile to have a maximum at the centre of the pipe at all times. In contrast, numerical finite-difference solutions of the full Navier–Stokes equations have suggested that the location of the velocity maximum moves from the wall towards the centre of the pipe at a short distance from the entrance, after which it remains at the centre of the pipe. This study presents the first experimental evidence of the moving velocity maximum from the wall towards the centre of the pipe. The initial uniform velocity profile was achieved by flowing the fluid through a monolith composed of narrow parallel channels and the flow development was investigated using magnetic resonance velocimetry. The experimentally observed variation of the position and size of the velocity maximum with the Reynolds number and the distance from the entrance to the pipe is shown to be in good agreement with the predictions of numerical finite-difference solutions of the full Navier–Stokes equations.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, C. B., Kim, J. H. & Cho, Z. H. 1986 High-speed spiral-scan echo planar NMR imaging – I. IEEE Trans. Med. Imaging MI‐5, 27.Google Scholar
Atkinson, B., Brocklebank, M. P., Card, C. C. H. & Smith, J. M. 1969 Low Reynolds number developing flows. AIChE J. 15, 548553.Google Scholar
Atkinson, B., Kemblowski, Z. & Smith, J. M. 1967 Measurements of velocity profile in developing liquid flows. AIChE J. 13, 1720.Google Scholar
Berman, N. S. & Santos, V. A. 1969 Laminar velocity profiles in developing flows using a Laser Doppler technique. AIChE J. 15, 323327.Google Scholar
Bodoia, J. R. & Osterle, J. F. 1961 Finite difference analysis of plane Poiseuille and Couette flow developments. Appl. Sci. Res. 10, 265276.Google Scholar
Boussinesq, J. 1891 Calcul de la moindre longeur que doit avoir un tube circulaire, èvasè á son entrèe, pour qu’un règime sensiblement uniforme s’y ètablisse, et de la dèpense de charge qu’y entraine l’ètablissement de ce règime. Comptes Rendus 113, 4951.Google Scholar
Boyce, C. M., Rice, N. P., Ozel, A., Davidson, J. F., Sederman, A. J., Gladden, L. F., Sundaresan, S., Dennis, J. S. & Holland, D. J. 2016 Magnetic resonance characterization of coupled gas and particle dynamics in a bubbling fluidized bed. Phys. Rev. Fluids 1, 074201.Google Scholar
Callaghan, P. T. 2011 Translational Dynamics and Magnetic Resonance. Oxford University Press.Google Scholar
Campbell, W. D. & Slattery, J. C. 1963 Flow in the entrance region of a tube. Trans. ASME J. Basic Engng 85, 4146.Google Scholar
Candés, E. J., Romberg, J. & Tao, T. 2006 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489509.Google Scholar
Chen, R. Y. 1973 Flow in the entrance region at low Reynolds numbers. J. Fluids Engng 95, 153185.Google Scholar
Christiansen, E. B. & Lemmon, H. E. 1965 Entrance region flow. AIChE J. 11, 995999.Google Scholar
Collins, M. & Schowalter, W. R. 1962 Laminar flow in the inlet section of a straight channel. Phys. Fluids 5, 11221124.Google Scholar
Dombrowski, N., Foumeny, E. A., Ookawara, S. & Riza, A. 1993 The influence of Reynolds number on the entry length and pressure drop for laminar pipe flow. Can. J. Chem. Engng 71, 472476.Google Scholar
Donoho, D. L. 2006 Compressed sensing. IEEE Trans. Inf. Theory 52, 12891306.Google Scholar
Durst, F., Ray, S., Ünsal, B. & Bayoumi, O. A. 2005 The development lengths of laminar pipe and channel flows. J. Fluids Engng 127, 11541160.Google Scholar
van Dyke, M. 1970 Entry flow in a channel. J. Fluid Mech. 44, 813823.Google Scholar
Elkins, C. J., Markl, M., Iyengar, A., Wicker, R. & Eaton, J. K. 2004 Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows. Intl J. Heat Fluid Flow 25, 702710.Google Scholar
Fargie, D. & Martin, B. W. 1971 Developing laminar flow in a pipe of circular cross-section. Proc. R. Soc. Lond. A 321, 461476.Google Scholar
Friedmann, M., Gillis, J. & Liron, N. 1968 Laminar flow in a pipe at low and moderate Reynolds numbers. Appl. Sci. Res. 19, 426438.Google Scholar
Fukushima, E. 1999 Nuclear magnetic resonance as a tool to study flow. Annu. Rev. Fluid Mech. 31, 95123.Google Scholar
Geraldes, V. M., Semião, V. A. & Pinho, M. N. 1998 Nanofiltration mass transfer at the entrance region of a slit laminar flow. Ind. Engng Chem. Res. 37, 47924800.Google Scholar
Gervais, T. & Jensen, K. F. 2006 Mass transport and surface reactions in microfluidic systems. Chem. Engng Sci. 61, 11021121.Google Scholar
Gillis, J. 1969 Viscous flow in the entry region of a straight channel. Phys. Fluids 12, II280.Google Scholar
Gladden, L. F., Akpa, B. S., Anadon, L. D., Heras, J. J., Holland, D. J., Mantle, M. D., Matthews, S., Mueller, C., Sains, M. C. & Sederman, A. J. 2006 Dynamic MR imaging of single- and two-phase flow. Trans. IChemE Part A 84, 272281.Google Scholar
Gladden, L. F. & Sederman, A. J. 2013 Recent advances in flow MRI. J. Magn. Reson. 229, 211.Google Scholar
Goldberg, I. S. & Folk, R. T. 1988 Solutions for steady and nonsteady entrance flow in a semi-infinite circular tube at very low Reynolds numbers. SIAM J. Appl. Maths. 48, 770791.Google Scholar
Goldstein, S. 1938 Modern Developments in Fluid Dynamics. Dover Publications.Google Scholar
Gupta, R. C. 1977 Laminar flow in the entrance of a tube. Appl. Sci. Res. 33, 110.Google Scholar
Hancock, M. J. & Bush, J. W. M. 2002 Fluid pipes. J. Fluid Mech. 466, 285304.Google Scholar
Hennig, J. 1986 RARE imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3, 823833.Google Scholar
Hornbeck, R. W. 1964 Laminar flow in the entrance region of a pipe. Appl. Sci. Res. 13, 224232.Google Scholar
Kanda, H. & Shimomukai, K. 2009 Numerical study of pressure distribution in entrance pipe flow. J. Complexity 25, 253267.Google Scholar
Kountouriotis, Z., Philippou, M. & Georgiou, G. C. 2016 Development lengths in Newtonian Poiseuille flows with wall slip. Appl. Math. Comp. 291, 98114.Google Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.Google Scholar
Kuo, Y. & Kamal, M. R. 1976 The fluid mechanics and heat transfer of injection mold filling of thermoplastic materials. AIChE J. 22, 661669.Google Scholar
Langhaar, H. L. 1942 Steady flow in the transition length of a straight tube. Trans. ASME J. Appl. Mech. 9, 5558.Google Scholar
Mackley, M. R. & Rutgers, R. P. G. 1998 Capillary rheometry. In Rheological Measurements (ed. Coyller, A. A. & Clegg, D. W.), pp. 167189. Springer.Google Scholar
McComas, S. T. & Eckert, E. R. G. 1965 Laminar pressure drop associated with the continuum entrance region and for slip flow in a circular tube. J. Appl. Mech. 32, 765770.Google Scholar
Mohanty, A. K. & Asthana, S. B. L. 1978 Laminar flow in the entrance region of a smooth pipe. J. Fluid Mech. 90 (3), 433447.Google Scholar
Mullin, T., Seddon, J. R. T., Mantle, M. D. & Sederman, A. J. 2009 Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21, 014110.Google Scholar
Newling, B., Poirier, C. C., Zhi, Y., Rioux, J. A., Coristine, A. J., Roach, D. & Balcom, B. J. 2004 Velocity imaging of highly turbulent flow. Phys. Rev. Lett. 93, 154503.Google Scholar
Nikuradse, J.1950 Laws of flow in rough pipes. NASA Tech. Mem. 1292.Google Scholar
Rieman, W. 1928 The value of the Hagenbach factor in the determination of viscosity by the efflux method. J. Am. Chem. Soc. 50, 4655.Google Scholar
dos Santos, R. G. & Figueiredo, J. R. 2007 Laminar elliptic flow in the entrance region of tubes. J. Braz. Soc. Mech. Sci. Eng. 29, 233239.Google Scholar
Schiller, L. 1922 Die entwicklung der laminaren geschwindigkeitsverteilung. Z. Angew. Math. Mech. 2, 96106.Google Scholar
Schlichting, H. 1969 Boundary-Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Sederman, A. J., Mantle, M. D., Buckley, C. & Gladden, L. F. 2004 MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J. Magn. Reson. 166, 182189.Google Scholar
Sparrow, E. M., Hixon, C. W. & Shavit, G. 1967 Experiments on laminar flow development in rectangular ducts. Trans. ASME J. Basic Engng 89, 116123.Google Scholar
Sparrow, E. M., Lin, S. H. & Lundgren, T. S. 1964 Flow development in the hydrodynamic entrance region of tubes and ducts. Phys. Fluids 7, 338347.Google Scholar
Sylvester, N. D. & Rosen, S. L. 1970 Laminar flow in the entrance region of a cylindrical tube. Part I. Newtonian fluids. AIChE J. 16, 964966.Google Scholar
Tayler, A. B., Benning, M., Sederman, A. J., Holland, D. J. & Gladden, L. F. 2014 Ultrafast magnetic-resonance-imaging velocimetry of liquid–liquid sustems: overcoming chemical-shift artifacts using compressed sensing. Phys. Rev. E 89, 063009.Google Scholar
Tayler, A. B., Holland, D. J., Sederman, A. J. & Gladden, L. F. 2012 Exploring the origins of turbulence in multiphase flow using Compressed Sensing MRI. Phys. Rev. Lett. 108, 264505.Google Scholar
Varghese, S. S., Frankel, S. H. & Fischer, P. F. 2007 Direct numerical simulation of stentotic flows. Part 1. Steady flow. J. Fluid Mech. 582, 253280.Google Scholar
Vrentas, J. S., Duda, J. L. & Bargeron, K. G. 1966 Effect of axial diffusion of vorticity on flow development in circular conduits. Part I. Numerical solutions. AIChE J. 12, 837844.Google Scholar
Wagner, M. H. 1975 Developing flow in circular conduits: transition from plug flow to tube flow. J. Fluid Mech. 72, 257268.Google Scholar
Wiginton, C. L. & Wendt, R. L. 1969 Flow in the entrance region of ducts. Phys. Fluids 12, 465466.Google Scholar
Wilson, S. D. R. 1971 Entry flow in a channel. Part 2. J. Fluid Mech. 46, 787799.Google Scholar
Xia, Y., Callaghan, P. T. & Jeffrey, K. R. 1992 Imaging velocity profiles: flow through an abrupt contraction and expansion. AIChE J. 38, 14081420.Google Scholar