Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:33:02.116Z Has data issue: false hasContentIssue false

Experimental and theoretical study of wave–current turbulent boundary layers

Published online by Cambridge University Press:  28 January 2015

Jing Yuan
Affiliation:
Department of Civil and Environmental Engineering, R. M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Ole S. Madsen
Affiliation:
Department of Civil and Environmental Engineering, R. M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

An experimental study of turbulent wave–current boundary layer flows is performed using a state-of-the-art oscillating water tunnel (OWT) for flow generation and a particle image velocimetry system for velocity measurements. The current velocity profiles in the presence of sinusoidal waves indicate a two-log-profile structure suggested by the widely-used Grant–Madsen model. However, for weak currents in the presence of nonlinear waves, the two-log-profile structure is contaminated or even totally obliterated by the boundary layer streaming which is produced by the asymmetry of turbulence in successive half-periods of nonlinear waves. To interpret experimental results, a semi-analytical model which adopts a rigorous way to account for a time-varying turbulent eddy viscosity is developed. The model can accurately predict turbulence asymmetry streaming, which leads to successful predictions of the mean velocity embedded in nonlinear-wave tests and the current velocity profiles in the presence of either sinusoidal or nonlinear waves. Since the Longuet-Higgins-type streaming due to wave propagation is absent in OWT flows and not included in the semi-analytical model, future work is necessary to extend this study for applications in the coastal environment.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der A, D. A., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.CrossRefGoogle Scholar
van der A, D. A., O’Donoghue, T. & Ribberink, J. S. 2010 Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations. Coast. Engng 57 (3), 331342.Google Scholar
Arnskov, M.M., Fredsøe, J. & Sumer, B. M. 1993 Bed shear stress measurements over a smooth bed in three-dimensional wave-current motion. Coast. Engng 20 (3), 277316.CrossRefGoogle Scholar
Bijker, E. W. 1966 The increase of bed shear in a current due to wave motion. Coast. Engng Proc. 1 (10), 749765.Google Scholar
Blondeaux, P., Vittori, G., Bruschi, A., Lalli, F. & Pesarino, V. 2012 Steady streaming and sediment transport at the bottom of sea waves. J. Fluid Mech. 697, 115149.Google Scholar
Christoffersen, J. B. & Jonsson, I. G. 1985 Bed friction and dissipation in a combined current and wave motion. Ocean Engng 12 (5), 387423.Google Scholar
Davies, A. G. & Li, Z. 1997 Modelling sediment transport beneath regular symmetrical and asymmetrical waves above a plane bed. Contin. Shelf Res. 17 (5), 555582.CrossRefGoogle Scholar
Dohmen-Janssen, C. M.1999 Grain size influence on sediment transport in oscillatory sheet flow. Phase lags and mobile-bed effects. PhD thesis, Delft University of Technology.Google Scholar
Dohmen-Janssen, C. M. & Hanes, D. M. 2002 Sheet flow dynamics under monochromatic nonbreaking waves. J. Geophys. Res. 107 (C10), 3149.Google Scholar
van Doorn, Th.1981 Experimental investigation of near-bottom velocities in water waves with and without a current. Tech. Rep. M1423, Delft Hydraulics.Google Scholar
Drake, D. E. & Cacchione, D. A. 1992 Wave-current interaction in the bottom boundary layer during storm and non-storm conditions: observations and model predictions. Contin. Shelf Res. 12 (12), 13311352.Google Scholar
Dungan Smith, J. 1977 Modeling of sediment transport on continental shelves. Sea 6, 539577.Google Scholar
Fernando, P. C., Guo, J. & Lin, P. 2011 Wave-current interaction at an angle 1: experiment. J. Hydraul. Res. 49 (4), 424436.Google Scholar
Fredsøe, J., Andersen, K. H. & Sumer, B. M. 1999 Wave plus current over a ripple-covered bed. Coast. Engng 38 (4), 177221.Google Scholar
Fuhrman, D. R., Fredsøe, J. & Sumer, B. M. 2009 Bed slope effects on turbulent wave boundary layers. 2. Comparison with skewness, asymmetry, and other effects. J. Geophys. Res. 114 (C3), C03025.Google Scholar
Fuhrman, D. R., Schløer, S. & Sterner, J. 2013 Rans-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes. Coast. Engng 73, 151166.Google Scholar
Gonzalez-Rodriguez, D. & Madsen, O. S. 2011 Boundary-layer hydrodynamics and bedload sediment transport in oscillating water tunnels. J. Fluid Mech. 667, 4884.Google Scholar
Grant, W. D. & Madsen, O. S. 1979 Combined wave and current interaction with a rough bottom. J. Geophys. Res. 84 (C4), 17971808.Google Scholar
Holmedal, L. E., Johari, J. & Myrhaug, D. 2013 The seabed boundary layer beneath waves opposing and following a current. Contin. Shelf Res. 65, 2744.Google Scholar
Holmedal, L. E. & Myrhaug, D. 2006 Boundary layer flow and net sediment transport beneath asymmetrical waves. Contin. Shelf Res. 26 (2), 252268.CrossRefGoogle Scholar
Holmedal, L. E. & Myrhaug, D. 2009 Wave-induced steady streaming, mass transport and net sediment transport in rough turbulent ocean bottom boundary layers. Contin. Shelf Res. 29 (7), 911926.Google Scholar
Humbyrd, C. J.2012 Turbulent combined wave-current boundary layer model for application in coastal waters. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173196.Google Scholar
Jonsson, I. G. & Carlsen, N. A. 1976 Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraul. Res. 14 (1), 4560.Google Scholar
Kemp, P. H. & Simons, R. R. 1982 The interaction between waves and a turbulent current: waves propagating with the current. J. Fluid Mech. 116, 227250.Google Scholar
Kemp, P. H. & Simons, R. R. 1983 The interaction of waves and a turbulent current: waves propagating against the current. J. Fluid Mech. 130, 7389.Google Scholar
Kranenburg, W. M., Ribberink, J. S., Schretlen, J. J. L. M. & Uittenbogaard, R. E. 2013 Sand transport beneath waves: the role of progressive wave streaming and other free surface effects. J. Geophys. Res. 118 (1), 122139.Google Scholar
Kranenburg, W. M., Ribberink, J. S., Uittenbogaard, R. E. & Hulscher, S. J. M. H. 2012 Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming. J. Geophys. Res. 117, F03005.Google Scholar
Lavelle, J. W. & Mofjeld, H. O. 1983 Effects of time-varying viscosity on oscillatory turbulent channel flow. J. Geophys. Res. 88 (C12), 76077616.Google Scholar
Lim, K. Y., Madsen, O. S. & Cheong, H. F.2012 Current characteristics in the presence of near-orthogonal waves. Proceedings of the 33rd International Conference on Coastal Engineering, p. currents. 41.Google Scholar
Lodahl, C. R., Sumer, B. M. & Fredsøe, J. 1998 Turbulent combined oscillatory flow and current in a pipe. J. Fluid Mech. 373, 313348.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245 (903), 535581.Google Scholar
Madsen, O. S. 1994 Spectral wave-current bottom boundary layer flows. In Proceedings of the 24th International Conference on Coastal Engineering, pp. 384398. ASCE.Google Scholar
Mathisen, P. P. & Madsen, O. S. 1996a Waves and currents over a fixed rippled bed. 1. Bottom roughness experienced by waves in the presence and absence of currents. J. Geophys. Res. 101 (C7), 1653316542.Google Scholar
Mathisen, P. P. & Madsen, O. S. 1996b Waves and currents over a fixed rippled bed. 2. Bottom and apparent roughness experienced by currents in the presence of waves. J. Geophys. Res. 101 (C7), 1654316550.Google Scholar
Mathisen, P. P. & Madsen, O. 1999 Waves and currents over a fixed rippled bed. 3. Bottom and apparent roughness for spectral waves and currents. J. Geophys. Res. 104 (C8), 1844718461.Google Scholar
Musumeci, R., Cavallaro, L., Foti, E., Scandura, P. & Blondeaux, P. 2006 Waves plus currents crossing at a right angle: experimental investigation. J. Geophys. Res. 111, C07019.Google Scholar
Myrhaug, D. & Slaattelid, O. H. 1989 Combined wave and current boundary layer model for fixed rough seabeds. Ocean Engng 16 (2), 119142.CrossRefGoogle Scholar
Nikuradse, J. 1932 Gesetzmässigkeiten der turbulenten strömung in glatten rohren. Ver. Dtsch. Ing. Forsch. 3, 136.Google Scholar
O’Donoghue, T. & Wright, S. 2004 Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands. Coast. Engng 51, 11631184.CrossRefGoogle Scholar
Ribberink, J. S. & Al-Salem, A. A. 1995 Sheet flow and suspension of sand in oscillatory boundary layers. Coast. Engng 25 (3–4), 205225.Google Scholar
Ruessink, B. G., Michallet, H., Abreu, T., Sancho, F., Van der A, D. A., Van der Werf, J. J. & Silva, P. A. 2011 Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows. J. Geophys. Res. 116, C03004.Google Scholar
Russell, R. C. H. & Osorio, J. D. C. 1958 An experimental investigation of drift profiles in a closed channel. Coast. Engng Proc. 1 (6), 10.Google Scholar
Scandura, P. 2007 Steady streaming in a turbulent oscillating boundary layer. J. Fluid Mech. 571, 265280.Google Scholar
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.Google Scholar
Sleath, J. F. A. 1991 Velocities and shear stresses in wave-current flows. J. Geophys. Res. 96 (C8), 1523715244.Google Scholar
Trowbridge, J. & Madsen, O. S. 1984a Turbulent wave boundary layers. 1. Model formulation and first-order solution. J. Geophys. Res. 89 (C5), 79897997.Google Scholar
Trowbridge, J. & Madsen, O. S. 1984b Turbulent wave boundary layers. 2. Second-order theory and mass transport. J. Geophys. Res. 89 (C5), 79998007.CrossRefGoogle Scholar
Wijetunge, J. J. 2006 Velocity and turbulence distribution in combined oscillatory and steady flow boundary layer over a rippled bed. Coast. Engng J. 48 (03), 197223.Google Scholar
Yu, X., Hsu, T. & Hanes, D. M. 2010 Sediment transport under wave groups: relative importance between nonlinear waveshape and nonlinear boundary layer streaming. J. Geophys. Res. 115, C02013.Google Scholar
Yuan, J.2013 Experimental and theoretical study of turbulent oscillatory boundary layers. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Yuan, J. & Madsen, O. S. 2014 Experimental study of turbulent oscillatory boundary layers in an oscillating water tunnel. Coast. Engng 89, 6384.Google Scholar