Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:59:21.576Z Has data issue: false hasContentIssue false

Experimental and theoretical study of vibration-induced thermal convection in low gravity

Published online by Cambridge University Press:  07 April 2010

VALENTINA SHEVTSOVA*
Affiliation:
Microgravity Research Centre, Université Libre de Bruxelles, CP-165/62 av. F. D. Roosevelt, 50, B-1050 Brussels, Belgium
ILYA I. RYZHKOV
Affiliation:
Microgravity Research Centre, Université Libre de Bruxelles, CP-165/62 av. F. D. Roosevelt, 50, B-1050 Brussels, Belgium
DENIS E. MELNIKOV
Affiliation:
Microgravity Research Centre, Université Libre de Bruxelles, CP-165/62 av. F. D. Roosevelt, 50, B-1050 Brussels, Belgium
YURI A. GAPONENKO
Affiliation:
Microgravity Research Centre, Université Libre de Bruxelles, CP-165/62 av. F. D. Roosevelt, 50, B-1050 Brussels, Belgium
ALIAKSANDR MIALDUN
Affiliation:
Microgravity Research Centre, Université Libre de Bruxelles, CP-165/62 av. F. D. Roosevelt, 50, B-1050 Brussels, Belgium
*
Email address for correspondence: [email protected]

Abstract

Vibrations acting on a fluid with density gradient induced by temperature variations can cause relative flows. High-frequency vibration leads to the appearance of time-averaged (mean) flows (or streaming flows), which can essentially affect heat and mass transfer processes. This phenomenon is most pronounced in the absence of other external forces (in particular, static gravity). In this work, an extensive experimental and computational study of thermal vibrational convection in a reduced-gravity environment of a parabolic flight is performed. The transient evolution of the temperature field in a cubic cell subjected to translational vibration is investigated by optical digital interferometry. The mean flow structures previously reported in numerical studies are confirmed. The transition from four-vortex flow to a pattern with a large diagonal vortex and two small vortices is observed in the transient state. The experiments reveal a significant enhancement of heat transfer by vibrational mean flows with increasing the vibrational strength. Three-dimensional direct numerical simulation with real microgravity profile and two-dimensional numerical modelling based on averaging approach provide a very good agreement with the experimental results. The influence of residual gravity on heat transfer and bifurcation scenario is first investigated numerically and correlated with the experimental data. It is demonstrated that gravity effects on non-uniformly heated fluids can be reproduced in weightlessness by applying vibrations to the system.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, J. I. D. 1990 Low gravity experiment sensitivity to residual accelerations: a review. Microgravity Sci. Technol. 3, 52.Google Scholar
Babushkin, I. A., Bogatyrev, G. P., Glukhov, A. F., Putin, A. F., Avdeev, S. V., Ivanov, A. I. & Maksimova, M. M. 2001 Investigation of thermal convection and low-frequency microgravity by the DACON Sensor aboard the MIR orbital complex. Cosmic Res. 39 (2), 161.CrossRefGoogle Scholar
Babushkin, I. A. & Demin, V. A. 2006 Vibrational convection in the Hele–Shaw cell: theory and experiment. J. Appl. Mech. Tech. Phys. 47 (2), 183.CrossRefGoogle Scholar
Beysens, D. 2006 Vibrations in space as an artificial gravity? Europhys. News 37 (3), 22.CrossRefGoogle Scholar
Biringen, S. & Danabasoglu, G. 1990 Computation of convective flow with gravity modulation in rectangular cavities. J. Thermophys. 4, 357.CrossRefGoogle Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745.CrossRefGoogle Scholar
Cisse, I., Bardan, G. & Mojtabi, A. 2004 Rayleigh–Bénard convective instability of a fluid under high-frequency vibration. Intl J. Heat Mass Transfer 47, 4101.CrossRefGoogle Scholar
Demin, V. A., Gershuni, G. Z. & Verkholantsev, I. V. 1996 Mechanical quasi-equilibrium and thermovibrational convective instability in an inclined fluid layer. Intl J. Heat Mass Transfer 39, 1979.CrossRefGoogle Scholar
Farooq, A. & Homsy, G. M. 1994 Streaming flows due to g-jitter-induced natural convection. J. Fluid Mech. 271, 351.CrossRefGoogle Scholar
Farooq, A. & Homsy, G. M. 1996 Linear and nonlinear dynamics of a differentially heated slot under gravity modulation. J. Fluid Mech. 313, 38.CrossRefGoogle Scholar
Gaponenko, Y. A., Pojman, J. A., Volpert, V. A. & Zenkovskaya, S. M. 2006 Effect of high-frequency vibration on convection in miscible liquids. J. Appl. Mech. Tech. Phys. 47 1, 190.CrossRefGoogle Scholar
Garrabos, Y., Beysens, D., Lecoutre, C., Dejoan, A., Polezhaev, V. & Emelianov, V. 2007 Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys. Rev. E 75, 056317.Google Scholar
Gershuni, G. Z., Kolesnikov, A. K., Legros, J. C. & Myznikova, B. I. 1997 On the vibrational convective instability of a horizontal, binary-mixture layer with the Soret effect. J. Fluid Mech. 330, 251.CrossRefGoogle Scholar
Gershuni, G. Z. & Lyubimov, D. V. 1998 Thermal Vibrational Convection. Wiley.Google Scholar
Gershuni, G. Z., Zhukhovitskii, E. M. & Yurkov, Y. S. 1982 Vibrational thermal convection in a rectangular cavity. Fluid Dyn. 17 (4), 565.CrossRefGoogle Scholar
Hirata, K., Sasaki, T. & Tanigawa, H. 2001 Vibrational effects on convection in a square cavity at zero gravity. J. Fluid Mech. 445, 327.CrossRefGoogle Scholar
Ishikawa, M. & Kamei, S. 1993 Instabilities of natural convection induced by gravity modulation. Microgravity Sci. Technol. 6 (4), 252.Google Scholar
Ivanova, A. A. & Kozlov, V. G. 2003 Thermal vibrational convection in a cavity under nontranslational oscillations. Fluid Dyn. 38 (3), 372.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Melnikov, D. E., Ryzhkov, I. I., Mialdun, A. & Shevtsova, V. 2008 Thermovibrational convection in microgravity: preparation of a parabolic flight experiment. Microgravity Sci. Technol. 20 (1), 29.CrossRefGoogle Scholar
Melnikov, D. E. & Shevtsova, V. M. 2005 Liquid particles tracing in three-dimensional buoyancy-driven flows. Fluid Dyn. Mat. Process. 1 (2), 189.Google Scholar
Mialdun, A., Ryzhkov, I. I., Melnikov, D. E. & Shevtsova, V. 2008 a Experimental evidence of thermal vibrational convection in a non-uniformly heated fluid in a reduced gravity environment. Phys. Rev. Lett. 101, 084501.CrossRefGoogle Scholar
Mialdun, A., Ryzhkov, I. I., Melnikov, D. E. & Shevtsova, V. 2008 b Experimental evidence of thermovibrational convection in reduced gravity. Space Res. Today 171, 4.CrossRefGoogle Scholar
Mialdun, A. & Shevtsova, V. 2008 Development of optical digital interferometry technique for measurement of thermodiffusion coefficients. Intl J. Heat Mass Transfer 51, 3164.CrossRefGoogle Scholar
Naumann, R. J. 2002 Transport from higher order g-jitter effects. Ann. NY Acad. Sci. 974, 29.CrossRefGoogle ScholarPubMed
Naumann, R. J., Haulenbeek, G., Kawamura, H. & Matsunaga, K. 2002 The JUSTSAP experiment on STS-95. Microgravity Sci. Technol. 13 (2), 22.Google Scholar
Pallares, J., Arroyo, M. P., Grau, F. X. & Giralt, F. 2001 Experimental laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers. Exp. Fluids 31, 208.Google Scholar
Savino, R. & Monti, R. 1998 Improving diffusion-controlled microgravity experiments by facility orientation. Proc. IMechE G 212 (6), 415.Google Scholar
Savino, R. & Monti, R. 2001 Fluid-dynamics experiment sensitivity to accelerations prevailing on microgravity platforms. In Physics of Fluids in Microgravity (ed. Monti, R.), chap. 15, pp. 515559. Taylor & Francis.Google Scholar
Savino, R., Monti, R. & Piccirillo, M. 1998 Thermovibrational convection in a fluid cell. Comp. Fluids 27 (8), 923.Google Scholar
Shevtsova, V., Melnikov, D. & Legros, J. C. 2004 The study of stationary and oscillatory weak flows in space experiments. Microgravity Sci. Technol. 15 (1), 49.Google Scholar
Shevtsova, V., Melnikov, D., Legros, J. C., Yan, Y., Saghir, Z., Lyubimova, T., Sedelnikov, G. & Roux, B. 2007 Influence of vibrations on thermodiffusion in binary mixture: a benchmark of numerical solutions. Phys. Fluids 19, 017111.Google Scholar
Tritton, D. J. 1988 Physical Fluid Dynamics. Clarendon.Google Scholar
Zavarykin, M. P., Zorin, S. V. & Putin, G. F. 1988 On thermoconvective instability in vibrational field. Doklad. USSR Acad. Sci. 299 (2), 309.Google Scholar
Zenkovskaya, S. M. & Simonenko, I. B. 1966 Effect of high-frequency vibration on convection initiation. Fluid Dyn. 1 (5), 51.Google Scholar
Zyuzgin, A. V., Ivanov, A. I., Polezhaev, V. I., Putin, G. F. & Soboleva, E. B. 2001 Convective motions in near-critical fluids under real zero-gravity conditions. Cosmic Res. 39 (2), 175.Google Scholar