Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T09:41:39.797Z Has data issue: false hasContentIssue false

Experimental and numerical shadowgraph in turbulent Rayleigh–Bénard convection with a rough boundary: investigation of plumes

Published online by Cambridge University Press:  15 May 2020

M. Belkadi
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, Campus Universitaire, 91405Orsay, France Sorbonne Université, Faculté des Sciences et Ingénierie, UFR d’Ingénierie, 75005Paris, France Laboratory of Turbomachinery, Ecole Militaire Polytechnique, Bordj El Bahri, 16111, Algiers, Algeria
L. Guislain
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
A. Sergent
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, Campus Universitaire, 91405Orsay, France Sorbonne Université, Faculté des Sciences et Ingénierie, UFR d’Ingénierie, 75005Paris, France
B. Podvin
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, Campus Universitaire, 91405Orsay, France
F. Chillà
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
J. Salort*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
*
Email address for correspondence: [email protected]

Abstract

We show that, in the case of turbulent Rayleigh–Bénard convection, shadowgraph can be used to gain quantitative results on the plume statistics and velocity. For this purpose, we compare the experimental shadowgraph of a Rayleigh–Bénard cell with the synthetic shadowgraph obtained by calculating the integrated two-dimensional Laplacian of the temperature field from a numerical simulation very similar to the experiment. We use image processing tools to enhance the quality of the shadowgraph image, and obtain quantitative statistics for the thermal plumes, such as plume density and plume velocity distribution. To highlight the efficiency of this new process of plume counting, we use, both in the experiment and in the numerical simulation, a turbulent Rayleigh–Bénard convection cell with a rough bottom surface and a smooth top surface, where the statistics of the plumes can be influenced (or not) by the roughness. In addition, the distribution of velocity obtained from processing the synthetic shadowgraph images of the direct numerical simulations (DNS) or the experimental shadowgraph images, are compared to the velocity fluid at mid-plane of the DNS or particle image velocimetry measurement in the experiment, respectively. It will be shown that the mean velocity profile measured using the advection of the plumes is different from the average Eulerian velocity profile.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X., Lohse, D., Stevens, R. J. A. M. & Verzicco, R. 2012 Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.CrossRefGoogle ScholarPubMed
Ahlers, G., Bodenschatz, E. & He, X. 2017 Ultimate-state transition of turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 2, 054603.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.CrossRefGoogle Scholar
Belkadi, M.2019 Numerical modeling of turbulent convection in rough Rayleigh–Bénard cell. PhD thesis.Google Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 269279.Google ScholarPubMed
Bouillaut, V., Lepot, S., Aumaître, S. & Gallet, B. 2019 Transition to the ultimate regime in a radiatively driven convection experiment. J. Fluid Mech. 861, R5.CrossRefGoogle Scholar
Bradski, G. 2000 The OpenCV Library. Dr. Dobb’s J. Softw. Tools 25 (11), 122125.Google Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005.Google Scholar
de Bruyn, J. R., Bodenschatz, E., Morris, S. W., Trainoff, S. P., Hu, Y., Cannel, D. S. & Ahlers, G. 1996 Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev. Sci. Instrum. 67 (6), 2043.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13 (5), 13001320.CrossRefGoogle Scholar
Chillà, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993 Boundary layer and scaling properties in turbulent thermal convection. Il Nuovo Cimento D 15 (9), 1229.CrossRefGoogle Scholar
Chillà, F., Rastello, M., Chaumat, S. & Castaing, B. 2004 Ultimate regime in Rayleigh–Bénard convection: the role of plates. Phys. Fluids 16 (7), 24522456.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.Google ScholarPubMed
Ciliberto, S., Francini, F. & Simonelli, F. 1985 Real time measurements of optical disuniformity fields. Opt. Commun. 54 (5), 251256.CrossRefGoogle Scholar
Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82 (20), 3998.CrossRefGoogle Scholar
Dalziel, S. B., Hugues, G. O. & Sutherland, B. R. 2000 Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 28, 322335.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81 (5), 987990.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 2001 Temperature fluctuations in a convection cell with rough upper and lower surfaces. Phys. Rev. E 63 (4), 046303.Google Scholar
Flór, J.-B., Scolan, H. & Gula, J. 2011 Frontal instabilities and waves in a differentially rotating fluid. J. Fluid Mech. 685, 532542.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.CrossRefGoogle Scholar
Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2009 Search for the ‘Ultimate State’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.CrossRefGoogle Scholar
García, A., Solano, J. P., Vicente, P. G. & Viedma, A. 2012 The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl. Therm. Engng 35, 196201.CrossRefGoogle Scholar
Gauthier, F., Salort, J., Bourgeois, O., Garden, J.-L., du Puits, R., Thess, A. & Roche, P.-E. 2009 Transition on local temperature fluctuations in highly turbulent convection. Europhys. Lett. 87, 44006.CrossRefGoogle Scholar
Goluskin, D. & Doering, C. R. 2016 Bounds for convection between rough boundaries. J. Fluid Mech. 804, 370386.CrossRefGoogle Scholar
Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M. & Randall, G. 2012 LSD: a Line Segment Detector. Image Processing On Line 2, 3555.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.CrossRefGoogle Scholar
Hattori, T., Bartos, N., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013 Experimental and numerical investigation of unsteady behaviour in the near-field of pure thermal planar plumes. Exp. Therm. Fluid Sci. 46, 139150.Google Scholar
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E 73, 055303(R).Google ScholarPubMed
He, X., Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2012a Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0. 8 and 4 × 1011 < Ra < 2 × 1014 : ultimate-state transition for aspect ratio 𝛾 = 1. 00. New J. Phys. 14, 063030.Google Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.CrossRefGoogle Scholar
He, X., van Gils, D. P. M., Bodenschatz, E. & Ahlers, G. 2015 Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection. New J. Phys. 17, 063028.Google Scholar
He, X. & Tong, P. 2011 Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E 83, 037302.Google ScholarPubMed
Jenkins, D. R. 1988 Interpretation of shadowgraph patterns in Rayleigh–Bénard convection. J. Fluid Mech. 190, 451469.CrossRefGoogle Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.CrossRefGoogle Scholar
Liot, O., Ehlinger, Q., Rusaouën, E., Coudarchet, T., Salort, J. & Chillà, F. 2017 Velocity fluctuations and boundary layer structure in a rough Rayleigh–Bénard cell filled with water. Phys. Rev. Fluids 2, 044605.CrossRefGoogle Scholar
Liot, O., Gay, A., Salort, J., Bourgoin, M. & Chillà, F. 2016a Inhomogeneity and Lagrangian unsteadiness in turbulent thermal convection. Phys. Rev. Fluids 1, 064406.CrossRefGoogle Scholar
Liot, O., Salort, J., Kaiser, R., du Puits, R. & Chillà, F. 2016b Boundary layer structure in a rough Rayleigh–Bénard cell filled with air. J. Fluid Mech. 786, 275293.CrossRefGoogle Scholar
Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia-gravity waves in a baroclinically unstable fluid. Q. J. R. Meteorol. Soc. 126, 32333254.CrossRefGoogle Scholar
MacDonald, M., Hutchins, N., Lohse, D. & Chung, D. 2019 Heat transfer in rough-wall turbulent thermal convection in the ultimate regime. Phys. Rev. Fluids 4, 071501(R).CrossRefGoogle Scholar
Marat, J.-P. 1780 Recherches physiques sur le feu. C.A. Jombert (Paris).Google Scholar
Musilová, V., Králik, T., Mantia, M. L., Macek, M., Urban, P. & Skrbek, L. 2017 Reynolds number scaling in cryogenic turbulent Rayleigh–Bénard convection in a cylindrical aspect ratio one cell. J. Fluid Mech. 832, 721744.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2012 Lagrandian acceleration measurements in convective thermal turbulence. J. Fluid Mech. 692, 395419.CrossRefGoogle Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Pascal, B., Pustelnik, N., Abry, P., Serres, M. & Vidal, V. 2018 Joint estimation of local variance and local regularity for texture segmentation. Application to multiphase flow characterization. In 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE.Google Scholar
du Puits, R., Resagk, C., Tilgner, A., Busse, F. H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.CrossRefGoogle Scholar
Qiu, X.-L., Shang, X.-D., Tong, P. & Xia, K.-Q. 2004 Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids 16 (2), 412423.CrossRefGoogle Scholar
Qiu, X.-L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64 (3), 036304.Google ScholarPubMed
Qiu, X.-L., Xia, K.-Q. & Tong, P. 2005 Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J. Turbul. 6 (30), 1.Google Scholar
Raffel, M. 2015 Background-oriented schlieren (BOS) techniques. Exp. Fluids 56, 60.CrossRefGoogle Scholar
Raffel, M., Willert, C., Wereley, S. T. & Kompenhans, J. 1998 Particle Image Velocimetry, Experimental Fluid Mechanics, Springer.CrossRefGoogle Scholar
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303(R).Google Scholar
Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.Google Scholar
Rusaouen, E., Liot, O., Salort, J., Castaing, B. & Chillà, F. 2018 Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries. J. Fluid Mech. 837, 443460.CrossRefGoogle Scholar
Sakakibara, J. & Adrian, R. J. 2004 Measurement of temperature field of a Rayleigh–Bénard convection using two-color laser-induced fluorescence. Exp. Fluids 37, 331340.CrossRefGoogle Scholar
Salort, J., Liot, O., Rusaouen, E., Seychelles, F., Tisserand, J.-C., Creyssels, M., Castaing, B. & Chillà, F. 2014 Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys. Fluids 26, 015112.CrossRefGoogle Scholar
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Experimental Fluid Mechanics, Springer.CrossRefGoogle Scholar
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.Google Scholar
Shishkina, O. & Wagner, C. 2011 Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech. 686, 568582.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.CrossRefGoogle ScholarPubMed
Stasiek, J. A. & Kowalewski, T. A. 2002 Thermochromic liquid crystals applied for heat transfer research. Opto-Electron. Rev. 10 (1), 110.Google Scholar
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72 (6), 067302.Google ScholarPubMed
Taberlet, N., Plihon, N., Auzémery, L., Sautel, J., Panel, G. & Gibaud, T. 2018 Synthetic Schlieren – application to the visualization and characterization of air convection. Eur. J. Phys. 39, 035803.Google Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47 (4), R2253R2256.Google ScholarPubMed
Tisserand, J.-C., Creyssels, M., Gasteuil, Y., Pabiou, H., Gibert, M., Castaing, B. & Chillà, F. 2011 Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids 23, 015105.CrossRefGoogle Scholar
Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503.CrossRefGoogle ScholarPubMed
Trainoff, S. P. & Cannell, D. S. 2002 Physical optics treatment of the shadowgraph. Phys. Fluids 14 (4), 1340.CrossRefGoogle Scholar
Tummers, M. J. & Steunebrink, M. 2019 Effect of surface roughness on heat transfer in Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 139, 10561064.CrossRefGoogle Scholar
Urban, P., Hanzelka, P., Králik, T., Macek, M. & Musilová, V. 2019 Elusive transition to the ultimate regime of turbulent Rayleigh–Bénard convection. Phys. Rev. E 99, 011101(R).Google ScholarPubMed
Urban, P., Hanzelka, P., Musilová, V., Králik, T., Mantia, M. L., Srnka, A. & Skrbek, L. 2014 Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1. New J. Phys. 16, 053042.Google Scholar
Vasiliev, A., Sukhanovskii, A., Frick, P., Budnikov, A., Fomichev, V., Bolshukhin, M. & Romanov, R. 2016 High Rayleigh number convection in a cubic cell with adiabatic sidewalls. Intl J. Heat Mass Transfer 102, 201212.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2015 Heat flux enhancement by regular surface roughness in turbulent thermal convection. J. Fluid Mech. 763, 109135.CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), eeat7480.CrossRefGoogle ScholarPubMed
Wei, P. & Ahlers, G. 2014 Logarithmic temperature profiles in the bulk of turbulent Rayleigh–Bénard convection for a Prandtl number of 12.3. J. Fluid Mech. 758, 809830.CrossRefGoogle Scholar
Wei, P., Chan, T.-S., Ni, R., Zhao, X.-Z. & Xia, K.-Q. 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.CrossRefGoogle Scholar
Wu, X.-Z.1991 Along a road to developed turbulence: free thermal convection in low temperature Helium gas. PhD thesis.Google Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 47.CrossRefGoogle Scholar
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.CrossRefGoogle ScholarPubMed
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68 (6), 066303.Google ScholarPubMed
Xie, Y.-C., Cheng, B.-Y.-C., Hu, Y.-B. & Xia, K.-Q. 2019 Universal fluctuations in the bulk of Rayleigh–Bénard turbulence. J. Fluid Mech. 878, R1.CrossRefGoogle Scholar
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Zhang, Y.-Z., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 836, R2.CrossRefGoogle Scholar
Zhou, Q., Li, C.-M., Lu, Z.-M. & Liu, Y.-L. 2011 Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 683, 94111.CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2007a Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (7), 074501.CrossRefGoogle Scholar
Zhou, Q. & Xia, K.-Q. 2010 Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075006.Google Scholar
Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2007b Measured oscillations of the velocity and temperature fields in turbulent Rayleigh–Bénard convection in a rectangular cell. Phys. Rev. E 76, 036301.Google Scholar
Zhou, S.-Q., Xie, Y.-C., Sun, C. & Xia, K.-Q. 2016 Statistical characterization of thermal plumes in turbulent thermal convection. Phys. Rev. Fluids 1, 054301.CrossRefGoogle Scholar
Zhu, X., Mathai, V., Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2018a Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120, 144502.CrossRefGoogle Scholar
Zhu, X., Stevens, R. J. A. M., Shishkina, O., Verzicco, R. & Lohse, D. 2019 NuRa 1/2 scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. J. Fluid Mech. 869, R4.CrossRefGoogle Scholar
Zhu, X., Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2017 Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119, 154501.CrossRefGoogle Scholar
Zhu, X., Verschoof, R. A., Bakhuis, D., Huisman, S. G., Verzicco, R., Sun, C. & Lohse, D. 2018b Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14, 417423.CrossRefGoogle Scholar