Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:49:37.690Z Has data issue: false hasContentIssue false

Exchange flow of two immiscible fluids and the principle of maximum flux

Published online by Cambridge University Press:  08 July 2011

R. R. KERSWELL*
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
*
Email address for correspondence: [email protected]

Abstract

The steady, coaxial flow in which two immiscible, incompressible fluids of differing densities move past each other slowly in a vertical cylindrical tube has a continuum of possibilities due to the arbitrariness of the interface between the fluids. By invoking the presence of surface tension to at least restrict the shape of any interface to that of a circular arc or full circle, we consider the following question: which flow will maximise the exchange when there is only one dividing interface Γ? Surprisingly, the answer differs fundamentally from the better-known co-directional two-phase flow situation where an axisymmetric (concentric) core-annular solution always optimises the flux. Instead, the maximal flux state is invariably asymmetric either being a ‘side-by-side’ configuration where Γ starts and finishes at the tube wall or an eccentric core-annular flow where Γ is an off-centre full circle in which the more viscous fluid is surrounded by the less viscous fluid. The side-by-side solution is the most efficient exchanger for a small viscosity ratio β ≲ 4.60 with an eccentric core-annular solution optimal otherwise. At large β, this eccentric solution provides 51% more flux than the axisymmetric core-annular flow which is always a local minimiser of the flux.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arakeri, J. H., Avila, F. E., Dada, J. M. & Tovar, R. O. 2000 Convection in a long vertical tube due to unstable stratification – A new type of turbulent flow? Curr. Sci. 79, 859866.Google Scholar
Batchelor, G. K. & Nitsche, J. M. 1993 Instability of stratified fluid in a vertical cylinder. J. Fluid Mech. 252, 419448.CrossRefGoogle Scholar
Beckett, F., Mader, H. M., Phillips, J. C., Rust, A. & Witham, F. 2011 An experimental study of low Reynolds number exchange flow of two Newtonian fluids in a vertical pipe. J. Fluid Mech. doi:10.1017/jfm.2011.264.CrossRefGoogle Scholar
Bentwich, M. 1964 Two-phase viscous axial flow in a pipe. Trans. ASME D 86, 669672.CrossRefGoogle Scholar
Bentwich, M. 1976 Two-phase axial laminar flow in a pipe with naturally curved surface. Chem. Engng Sci. 31, 7176.CrossRefGoogle Scholar
Bentwich, M., Kelly, D. A. I. & Epstein, N. 1970 Two-phase eccentric interface laminar pipeline flow. J. Basic Engng 92, 3236.CrossRefGoogle Scholar
Biberg, D. & Halvorsen, G. 2000 Wall and interfacial shear stress in pressure driven two phase laminar stratified pipe flow in circular conduits. Intl J. Multiph. Flow 26, 16451673.CrossRefGoogle Scholar
Brauner, N., Rovinsky, J. & Maron, D. M. 1996 Analytical solution for laminar-laminar two-phase stratified flow in circular conduits. Chem. Engng. Comm. 141–142, 103143.CrossRefGoogle Scholar
Charles, M. E. & Redberger, P. J. 1961 The reduction of pressure gradients in oil pipelines by the addition of water. Numerical analysis of stratified flows. Can. J. Chem. Engng 40, 7075.CrossRefGoogle Scholar
Everage, A. E. 1973 Theory of bicomponent flow of polymer melts. I Equilibrium Newtonian tube flow. Trans. Soc. Rheol. 17, 629646.CrossRefGoogle Scholar
Frigaard, I. A. & Scherzer, O. 1998 Uniaxial exchange flows of Bingham fluids in a cylindrical duct. IMA J. Appl. Maths 61, 237266.CrossRefGoogle Scholar
Gemmell, A. R. & Epstein, N. 1962 Numerical analysis of stratified laminar flow of two immiscible Newtonian liquids in a circular pipe. Can. J. Chem. Engng 40, 215224.CrossRefGoogle Scholar
Goodman, J., Kohn, R. V. & Reyna, L. 1986 Numerical study of a relaxed variational problem from optimal design. Comput. Meth. Appl. Mech. Engng 57, 107127.CrossRefGoogle Scholar
Gorelik, D. & Brauner, N. 1999 The interface configuration in two-phase stratified pipe flows. Intl J. Multiph. Flow 25, 9771007.CrossRefGoogle Scholar
Hall, A. R. W. 1992 Multiphase flow of oil, water and gas in horizontal pipes. PhD thesis, University of London, London, UK.Google Scholar
Hall, A. R. W. & Hewitt, G. F. 1993 Application of two-fluid analysis to laminar stratified oil-water flows. Intl J. Multiph. Flow 19, 711717.CrossRefGoogle Scholar
Hasson, D., Mann, U. & Nir, A. 1970 Annular flow of two immiscible liquids. I. Mechanisms. Can. J. Chem. Engng 48, 514.CrossRefGoogle Scholar
Hodgson, G. W. & Charles, M. E. 1963 The pipeline flow of capsules. Part 1: The concept of capsule pipelining Can. J. Chem. Engng 41, 4345.CrossRefGoogle Scholar
Huppert, H. E. & Hallworth, M. A. 2007 Bi-directional flows in constrained systems. J. Fluid Mech. 578, 95112.CrossRefGoogle Scholar
Joseph, D. D., Nguyen, K. & Beavers, G. S. 1984 a Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities. J. Fluid Mech. 141, 319345.CrossRefGoogle Scholar
Joseph, D. D., Renardy, M. & Renardy, Y. 1984 b Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.CrossRefGoogle Scholar
Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core-annular flows. Ann. Rev. Fluid Mech. 29, 6590.CrossRefGoogle Scholar
Kazahaya, K. Shinohara, H. & Saito, G. 1994 Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull. Volcanol. 56, 207216.CrossRefGoogle Scholar
Kruyer, J., Redberger, P. J. & Ellis, H. S. 1967 The pipeline flow of capsules. Part 9. J. Fluid Mech. 30, 513531.CrossRefGoogle Scholar
Lee, B. L. & White, J. L. 1974 An experimental study of rheological properties of polymer melts in laminar shear flow and of interface deformation and its mechanisms in two-phase stratified flow. Trans. Soc. Rheol. 18, 467.CrossRefGoogle Scholar
Maclean, D. L. 1973 A theoretical analysis of bicomponent flow and the problem of interface shape. Trans. Soc. Rheol. 17, 385.CrossRefGoogle Scholar
Markuskevich, A. I. 1965 Theory of Functions of a Complex Variable, vol. 1, pp. 205207 Prentice-Hall, Inc.Google Scholar
Minagawa, N. & White, J. L. 1975 Coextrusion of unfilled and TiO2-filled polyethylene: influence of viscosity and die cross-section on interface shape. Polymer Engng Sci. 15, 825.CrossRefGoogle Scholar
Moyers-Gonzalez, M. A. & Frigaard, I. A. 2004 Numerical solution of duct flows of multiple visco-plastic fluids. J. Non-Newtonian Fluid Mech. 122, 227241.CrossRefGoogle Scholar
Ng, T. S., Lawrence, C. J. & Hewitt, G. F. 2002 Laminar stratified pipe flow. Intl J. Multiph. Flow. 28, 963996.CrossRefGoogle Scholar
Packham, B. A. & Shail, R. 1971 Stratified laminar flow of two immiscible fluids. Proc. Camb. Phil. Soc. 69, 443448.CrossRefGoogle Scholar
Ranger, K. B. & Davis, A. M. J. 1979 Steady pressure driven two-phase stratified laminar flow through a pipe. Can. J. Chem. Engng 57, 688691.CrossRefGoogle Scholar
Rovinsky, J., Brauner, N. & Maron, D. M. 1997 Analytical solution for laminar two-phase flow in a fully eccentric core-annular configuration. Intl J. Multiph. Flow 23, 523543.CrossRefGoogle Scholar
Russell, T. W. F. & Charles, M. E. 1959 The effect of the less viscous liquid in the laminar flow of two immiscible liquids. Cam. J. Chem. Engng 27, 1834.CrossRefGoogle Scholar
Semenov, N. L. & Tochigin, A. A. 1962 An analytical study of the separate laminar flow of a two-phase mixture in inclined pipes. J. Engng Phys. 4, 29.Google Scholar
Seon, T., Znaien, J., Salin, D., Hulin, J. P., Hinch, E. J. & Perrin, B. 2007 Transient buoyancy-driven front dynamics in nearly horizontal tubes. Phys. Fluids 19, 123603.CrossRefGoogle Scholar
Southern, J. H. & Ballman, R. L. 1973 Stratified bicomponent flow of polymer melts in a tube. Appl. Polymer Symp. 20, 175189.Google Scholar
Stevenson, D. S. & Blake, S. 1998 Modelling the dynamics and thermodynamics of volcanic degassing. Bull. Volcanol. 60, 307317.CrossRefGoogle Scholar
Taghavi, S. M., Seon, T., Martinez, D. M. & Frigaard, I. A. 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.CrossRefGoogle Scholar
Vlasov, V. I. 1986 Solution of a Dirichlet problem in a crescent-shaped domain. J. Engng Phys. Thermophys. 50, 741747.CrossRefGoogle Scholar
White, F. M. 1991 Viscous Fluid Flow. p. 124. McGraw-Hill.Google Scholar
Williams, M. C. 1975 Migration of two liquid phases in capillary extrusion: an energy interpretation. AIChE. J. 21, 1204.CrossRefGoogle Scholar
Yu, H. S. & Sparrow, E. M. 1967 Stratified laminar flow in ducts of arbitrary shape. AIChE. J. 13, 10.CrossRefGoogle Scholar
Znaien, J., Hallez, Y., Moisy, F., Magnaudet, J., Hullin, J. P., Salin, D. & Hinch, E. J. 2009 Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube. Phys. Fluids 21, 115102.CrossRefGoogle Scholar