Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T15:43:37.621Z Has data issue: false hasContentIssue false

Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations

Published online by Cambridge University Press:  15 October 2010

A. TOFFOLI*
Affiliation:
Det Norske Veritas, Veritasveien 1, NO-1322 Høvik, Norway
O. GRAMSTAD
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
K. TRULSEN
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
J. MONBALIU
Affiliation:
KU Leuven, Kastlepark Arenberg 40, 3001 Heverlee, Belgium
E. BITNER-GREGERSEN
Affiliation:
Det Norske Veritas, Veritasveien 1, NO-1322 Høvik, Norway
M. ONORATO
Affiliation:
Dipartimento di Fisica Generale, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy
*
Present address: Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia. Email address for correspondence: [email protected]

Abstract

Nonlinear modulational instability of wavepackets is one of the mechanisms responsible for the formation of large-amplitude water waves. Here, mechanically generated waves in a three-dimensional basin and numerical simulations of nonlinear waves have been compared in order to assess the ability of numerical models to describe the evolution of weakly nonlinear waves and predict the probability of occurrence of extreme waves within a variety of random directional wave fields. Numerical simulations have been performed following two different approaches: numerical integration of a modified nonlinear Schrödinger equation and numerical integration of the potential Euler equations based on a higher-order spectral method. Whereas the first makes a narrow-banded approximation (both in frequency and direction), the latter is free from bandwidth constraints. Both models assume weakly nonlinear waves. On the whole, it has been found that the statistical properties of numerically simulated wave fields are in good quantitative agreement with laboratory observations. Moreover, this study shows that the modified nonlinear Schrödinger equation can also provide consistent results outside its narrow-banded domain of validity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annenkov, S. Y. & Shrira, V. I. 2001 Numerical modelling of water-wave evolution based on the Zakharov equation. J. Fluid. Mech. 449, 341371.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2009 Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36, L13603.CrossRefGoogle Scholar
Arhan, M. & Plaisted, R. O. 1981 Non-linear deformation of sea-wave profiles in intermediate and shallow water. Oceanol. Acta 4 (2), 107115.Google Scholar
Bateman, W. J. D., Swan, C. & Taylor, P. H. 2001 On the efficient numerical simulation of directionally spread surface water waves. J. Comput. Phys. 174, 277305.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part I: Theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Bitner, E. M. (now Bitner-Gregersen, E. M.) 1980 Nonlinear effects of the statistical model of shallow-water wind waves. Appl. Ocean Res. 2, 6373.CrossRefGoogle Scholar
Bitner-Gregersen, E. & Magnusson, A. K. 2004 Extreme events in field data and in a second order wave model. In Proc. Rogue Waves 2004, Brest, France.Google Scholar
Clamond, D., Francius, M., Grue, J. & Kharif, C. 2006 Long time interaction of envelope solitons and freak wave formations. Eur. J. Mech. B/Fluids 25, 536553.CrossRefGoogle Scholar
Clamond, D. & Grue, J. 2001 A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447, 337355.CrossRefGoogle Scholar
Denissenko, P., Lukaschuk, S. & Nazarenko, S. 2007 Gravity wave turbulence in a laboratory flume. Phys. Rev. Lett. 99, 014501.CrossRefGoogle Scholar
Dommermuth, D. G. & Yue, D. K. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Donelan, M. A., Drennan, W. M. & Magnusson, A. K. 1996 Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr. 26, 19011914.2.0.CO;2>CrossRefGoogle Scholar
Ducrozet, G., Bonnefoy, D., Le Touzé, D. & Ferrant, P. 2007 3-D HOS simulations of extreme waves in open seas. Nat. Hazards Earth Syst. Sci. 7, 109122.CrossRefGoogle Scholar
Dysthe, K. B. 1979 Note on the modification of the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105114.Google Scholar
Dysthe, K., Krogstad, H. E. & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (1), 287310.CrossRefGoogle Scholar
Dysthe, K. B., Trulsen, K., Krogstad, H. & Socquet-Juglard, H. 2003 Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 110.CrossRefGoogle Scholar
Emery, W. J. & Thomson, R. E. 2001 Data Analysis Methods in Physical Oceanography. Elsevier Science.Google Scholar
Fochesato, C. & Dias, F. 2006 A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. Lond. A 462, 27152735.Google Scholar
Fochesato, C., Grilli, S. & Dias, F. 2007 Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion 26, 395416.CrossRefGoogle Scholar
Forristall, G. Z. 2000 Wave crests distributions: observations and second-order theory. J. Phys. Ocean. 30, 19311943.2.0.CO;2>CrossRefGoogle Scholar
Gibson, R. S., Swan, C. & Tromans, P. S. 2007 Fully nonlinear statistics of wave crest elevation calculated using a spectral response surface method: application to unidirectional sea states. J. Phys. Ocean. 379, 315.CrossRefGoogle Scholar
Gramstad, O. & Trulsen, K. 2007 Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech. 582, 463472.CrossRefGoogle Scholar
Gramstad, O. & Trulsen, K. 2010 Can swell increase the number of freak waves in a wind sea? J. Fluid Mech. 650, 5779.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1: General theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Hauser, D., Kahma, K. K., Krogstad, H. E., Lehner, S., Monbaliu, J. & Wyatt, L. W. (Ed.) 2005 Measuring and Analysing the Directional Spectrum of Ocean Waves. Cost Office.Google Scholar
Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. 2000 Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr. 30, 27682787.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interaction and freak waves. J. Phys. Ocean. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. 2009 On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech. 637, 144.CrossRefGoogle Scholar
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids 22, 603634.CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, H. & Janssen, P. A. E. M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press.CrossRefGoogle Scholar
Lo, E. Y. & Mei, C. C. 1987 Slow evolution of nonlinear deep-water waves in two horizontal directions: a numerical study. Wave Motion 9, 245259.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1963 The effect of non-linearities on statistical distribution in the theory of sea waves. J. Fluid Mech. 17, 459480.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1976 On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model. Proc. R. Soc. Lond. A 347, 311328.Google Scholar
Lvov, Y. V., Nazarenko, S. & Pokorni, B. 2006 Discreteness and its effect on water-wave turbulence. Physica D 218, 2435.CrossRefGoogle Scholar
Mori, N., Onorato, M., Janssen, P. A. E. M., Osborne, A. R. & Serio, M. 2007 On the extreme statistics of long-crested deep water waves: theory and experiments. J. Geophys. Res. 112, C09011.Google Scholar
Mori, N. & Yasuda, T. 2002 Effects of high-order nonlinear interactions on unidirectional wave trains. Ocean Engng 29, 12331245.CrossRefGoogle Scholar
Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., Osborne, A. R., Pakozdi, C., Serio, M., Stansberg, C. T., Toffoli, A. & Trulsen, K. 2009 a Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R. & Serio, M. 2002 a Extreme wave events in directional random oceanic sea states. Phys. Fluids 14 (4), 2528.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R. & Serio, M. 2005 a On deviations from Gaussian statistics for surface gravity waves. In Rogue Waves: Proceedings of the Hawaiian Winter Workshop. University of Hawaii at Manoa, pp. 7983.Google Scholar
Onorato, M., Osborne, A. R., Serio, M. & Bertone, S. 2001 Freak waves in random oceanic sea states. Phys. Rev. Lett. 86 (25), 58315834.CrossRefGoogle ScholarPubMed
Onorato, M., Osborne, A. R., Serio, M. & Cavaleri, L. 2005 b Modulational instability and non-Gaussian statistics in experimental random water-wave trains. Phys. Fluids 17, 078101.CrossRefGoogle Scholar
Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2006 Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. B/Fluids 25, 586601.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M., Resio, D., Puskarev, A., Zakharov, V. E. & Brandini, C 2002 b Freely decaying weak turbulence for sea surface gravity waves. Phys. Rev. Lett. 89, 144501.CrossRefGoogle ScholarPubMed
Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramdstad, O., Janssen, P. A. E. M., Kinoshita, T., Monbaliu, J., Mori, N., Osborne, A. R., Serio, M., Stansberg, C. T., Tamura, H. & Trulsen, K. 2009 b Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102, 114502.CrossRefGoogle ScholarPubMed
Petrova, P, Cherneva, Z. & Guedes Soares, C. 2006 Distribution of crest heights in sea states with abnormal waves. Appl. Ocean Res. 28, 235245.CrossRefGoogle Scholar
Prevosto, M., Krogstad, H. E. & Robin, A. 2000 Probability distributions for maximum wave and crest heights. Coast. Engng 40, 329360.CrossRefGoogle Scholar
Shemer, L., Sergeeva, A. & Slunyaev, A. 2010 Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: experimental validation. Phys. Fluids 22, 016601.CrossRefGoogle Scholar
Socquet-Juglard, H., Dysthe, K., Trulsen, K., Krogstad, H. E. & Liu, J. 2005 Distribution of surface gravity waves during spectral changes. J. Fluid Mech. 542, 195216.CrossRefGoogle Scholar
Stansberg, C. T. 1994 Effects from directionality and spectral bandwidth on non-linear spatial modulations of deep-water surface gravity waves. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, vol. 1, pp. 579–593.Google Scholar
Tanaka, M. 2001 a A method of studying nonlinear random field of surface gravity waves by direct numerical simulations. Fluid Dyn. Res. 28, 4160.CrossRefGoogle Scholar
Tanaka, M. 2001 b Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations. J. Fluid Mech. 444, 199221.CrossRefGoogle Scholar
Tanaka, M. 2007 On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J. Phys. Ocean. 37, 10221036.CrossRefGoogle Scholar
Tanaka, M. & Yokoyama, N. 2004 Effects of discretization of the spectrum in water-wave turbulence. Fluid Dyn. Res. 34, 199216.CrossRefGoogle Scholar
Tayfun, M. A. 1980 Narrow-band nonlinear sea waves. J. Geophys. Res. 85 (C3), 15481552.CrossRefGoogle Scholar
Tayfun, M. A. & Fedele, F. 2007 Wave-height distributions and nonlinear effects. Ocean Engng 34, 16311649.CrossRefGoogle Scholar
Toffoli, A., Benoit, M., Onorato, M. & Bitner-Gregersen, E. M. 2009 The effect of third-order nonlinearity on statistical properties of ransom directional waves in finite depth. Nonlin. Process. Geophys. 16, 131139.CrossRefGoogle Scholar
Toffoli, A., Bitner-Gregersen, E., Onorato, M. & Babanin, A. V. 2008 a Wave crest and trough distributions in a broad-banded directional wave field. Ocean Engng 35, 17841792.CrossRefGoogle Scholar
Toffoli, A., Onorato, M., Babanin, A. V., Bitner-Gregersen, E., Osborne, A. R. & Monbaliu, J. 2007 Second-order theory and set-up in surface gravity waves: a comparison with experimental data. J. Phys. Ocean. 37, 27262739.CrossRefGoogle Scholar
Toffoli, A., Onorato, M., Bitner-Gregersen, E., Osborne, A. R. & Babanin, A. V. 2008 b Surface gravity waves from direct numerical simulations of the Euler equations: a comparison with second-order theory. Ocean Engng 35 (3–4), 367379.CrossRefGoogle Scholar
Toffoli, A., Onorato, M., Bitner-Gregersen, E. M. & Monbaliu, J. 2010 The development of a bimodal structure in ocean wave spectra. J. Geophys. Res. 115, C03006.Google Scholar
Trulsen, K. & Dysthe, K. B. 1996 A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281289.CrossRefGoogle Scholar
Tsai, W.-T. & Yue, D. K. 1996 Computation of nonlinear free-surface flows. Annu. Rev. Fluid Mech. 28, 249278.CrossRefGoogle Scholar
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39, 621639.CrossRefGoogle Scholar
West, B. J., Brueckner, K. A., Jand, R. S., Milder, D. M. & Milton, R. L. 1987 A new method for surface hydrodynamics. J. Geophys. Res. 92 (C11), 1180311824.CrossRefGoogle Scholar
Young, I. R. 1994 On the measurement of directional wave spectra. Appl. Ocean Res. 16, 283294.CrossRefGoogle Scholar
Zakharov, V. 1968 Stability of period waves of finite amplitude on surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar
Zakharov, V. E., Dyachenko, A. I. & Vasilyev, O. A. 2002 New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B/Fluids 21, 283291.CrossRefGoogle Scholar
Zakharov, V. E. & Shabat, P. B. 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 6269.Google Scholar