Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:58:23.396Z Has data issue: false hasContentIssue false

Evolution of the ejecta sheet from the impact of a drop with a deep pool

Published online by Cambridge University Press:  14 October 2011

L. V. Zhang
Affiliation:
Department of Physics, and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
J. Toole
Affiliation:
Department of Physics, and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
K. Fezzaa
Affiliation:
X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
R. D. Deegan*
Affiliation:
Department of Physics, and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
*
Email address for correspondence: [email protected]

Abstract

We used optical and X-ray imaging to observe the formation of jets from the impact of a single drop with a deep layer of the same liquid. For high Reynolds number there are two distinct jets: the thin, fast and early-emerging ejecta; and the slow, thick and late-emerging lamella. For low Reynolds number the two jets merge into a single continuous jet, the structure of which is determined by the distinct contributions of the lamella and the ejecta. We measured the emergence time, position and speed of the ejecta sheet, and find that these scale as power laws with the impact speed and the viscosity. We identified the origin of secondary droplets with the breakup of the lamella and the ejecta jets, and show that the size of the droplets is not a good indicator of their origin.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Butterworth, J. & McCartney, H. A. 1991 The dispersal of bacteria from leaf surfaces by water splash. J. Appl. Bacteriol. 71 (6), 484496.CrossRefGoogle Scholar
2. Coppola, G., Rocco, G. & de Luca, L. 2011 Insights on the impact of a plane drop on a thin liquid film. Phys. Fluids 23 (2), 022105.CrossRefGoogle Scholar
3. Cossali, G. E., Marengo, M., Coghe, A. & Zhdanov, S. 2004 The role of time in single drop splash on thin film. Exp. Fluids 36 (6), 888900.CrossRefGoogle Scholar
4. Davidson, M. R. 2002 Spreading of an inviscid drop impacting on a liquid film. Chem. Engng Sci. 57 (17), 36393647.CrossRefGoogle Scholar
5. Deegan, R. D., Brunet, P. & Eggers, J. 2008 Complexities of splashing. Nonlinearity 21 (1), C1C11.CrossRefGoogle Scholar
6. Fezzaa, K. & Wang, Y. J. 2008 Ultrafast X-ray phase-contrast imaging of the initial coalescence phase of two water droplets. Phys. Rev. Lett. 100 (10), 104501.CrossRefGoogle ScholarPubMed
7. Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R. & Smith, F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.CrossRefGoogle Scholar
8. Keller, J. B., King, A. & Ting, L. 1995 Blob formation. Phys. Fluids 7 (1), 226228.CrossRefGoogle Scholar
9. Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.CrossRefGoogle Scholar
10. Pasandideh-Fard, M., Aziz, S. D., Chandra, S. & Mostaghimi, J. 2001 Cooling effectiveness of a water drop impinging on a hot surface. Intl J. Heat Transfer Fluid Flow 22 (2), 201210.CrossRefGoogle Scholar
11. Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
12. Reitz, R. D. & Rutland, C. J. 1995 Development and testing of diesel-engine cfd models. Prog. Energy Combust. Sci. 21 (2), 173196.CrossRefGoogle Scholar
13. Rioboo, R., Bauthier, C., Conti, J., Voue, M. & De Coninck, J. 2003 Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 35 (6), 648652.CrossRefGoogle Scholar
14. Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33 (1), 112124.CrossRefGoogle Scholar
15. Spillman, J. J. 1984 Spray impaction, retention and adhesion – an introduction to basic characteristics. Pesticide Sci. 15 (2), 97106.CrossRefGoogle Scholar
16. Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
17. Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106 (3), 034501.CrossRefGoogle ScholarPubMed
18. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 Advances in quantifying air–sea gas exchange and environmental forcing. Annu. Rev. Marine Sci. 1, 213244.CrossRefGoogle ScholarPubMed
19. Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.CrossRefGoogle Scholar
20. Worthington, A. M. 1882 On impact with a liquid surface. Proc. Phys. Soc. Lond. 34, 217230.Google Scholar
21. Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
22. Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces – self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
23. Zhang, L. V., Brunet, P., Eggers, J. & Deegan, R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22 (12), 122105.CrossRefGoogle Scholar