Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-20T16:09:29.488Z Has data issue: false hasContentIssue false

Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone

Published online by Cambridge University Press:  25 September 2008

D. BOUNTIN
Affiliation:
Khristianovich Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
A. SHIPLYUK
Affiliation:
Khristianovich Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
A. MASLOV
Affiliation:
Khristianovich Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk, 630090, Russia

Abstract

Nonlinear processes in a hypersonic boundary layer on a sharp cone are considered using the bicoherence method. The experiments are performed for a Mach number M = 5.95 with introduction of artificial wave packets at the frequency of the second mode. It is shown that the basic mechanism of nonlinear interaction at the location of the maximum r.m.s. voltage fluctuation is the subharmonic resonance; all nonlinear interactions in the maximum r.m.s. voltage fluctuation layer are related to the second mode of disturbances; nonlinear processes above and below that layer are much more intense than those in it. The effect of artificial disturbances on nonlinear interactions in the boundary layer is shown to be insignificant.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, N. A. & Kleiser, L. 1996 Subharmonic transition to turbulence in a flat-plate boundary layer at Mach number 4.5. J. Fluid Mech. 317, 301335.CrossRefGoogle Scholar
Borodulin, V. I., Kachanov, Y. S. & Koptsev, D. B. 2002 Experimental study of resonant interactions of instability waves in self-similar boundary layer with an adverse pressure gradient. 3. Broadband disturbances. J. Turbulence 3, 064.CrossRefGoogle Scholar
Chokani, N. 1999 Nonlinear spectral dynamics of hypersonic laminar boundary layer flow. Phys. Fluids. 12, 38463851.CrossRefGoogle Scholar
Chokani, N., Bountin, D. A., Shiplyuk, A. N. & Maslov, A. A. 2005 Nonlinear aspects of hypersonic boundary-layer stability on a porous surface. AIAA J. 43, 149155.CrossRefGoogle Scholar
Craik, A. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393413.CrossRefGoogle Scholar
Demetriades, A. 1978 New experiments on hypersonic boundary layer stability including wall temperature effect. Proc. Heat Transfer Fluid Mech. Inst. 26, 3954.Google Scholar
Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2003 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J. Fluid Mech. 479, 99124.CrossRefGoogle Scholar
Kachanov, U. S., Gilyev, V. M. & Kozlov, V. V. 1983 Wave space packet development in boundary layer. Izv. Akad. Nauk USSR. Tech. Nauk. 3, 13 (in Russian).Google Scholar
Kachanov, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid. Mech. 26, 411482.CrossRefGoogle Scholar
Kachanov, Y. S. & Levchenko, V. Y. 1984 The resonance interaction of disturbances at laminar-turbulent transition. J. Fluid Mech. 138, 209247.CrossRefGoogle Scholar
Kendall, J. M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary layer transition. AIAA J. 13, 290299.CrossRefGoogle Scholar
Kim, Y. C. & Powers, E. J. 1979 Digital bispectral analysis and its applications to non-linear wave interactions. IEEE Trans. Plasma Sci. 7, 120CrossRefGoogle Scholar
Kimmel, R. L. & Kendall, J. M. 1991 Nonlinear disturbances in a hypersonic boundary layer. AIAA Paper 91–0320.CrossRefGoogle Scholar
Kosinov, A. D., Semionov, N. V., Shevelkov, S. G. & Zinin, O. I. 1994 Experiments on the nonlinear instability of supersonic boundary layers. In Nonlinear Instability of Nonparallel Flows. (ed. Valentine, D. T., Lin, S. P. & Philips, W. R. C.). pp 196205. Springer.CrossRefGoogle Scholar
Mack, L. M. 1969 Boundary layer stability theory. Pasadena: Document/JPL No. 900-277, Rev. A.Google Scholar
Maslov, A. A., Kosinov, A. D. & Shevelkov, S. G. 1990 Experiments on the stability of supersonic laminar boundary layers. J. Fluid Mech. 219, 621633.Google Scholar
Maslov, A. A., Shiplyuk, A. N., Bountin, D. A. & Sidorenko, A. A. 2006 Mach 6 boundary-layer stability experiments on sharp and blunted cones. J. Spacecraft Rockets 43, 7176.CrossRefGoogle Scholar
Nikias, C. L. & Raghuveer, M. R. 1987 Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75, 869891.CrossRefGoogle Scholar
Papoulis, A. 1965 Probability, Random Variables and Stochastic Processes. McGraw-Hill.Google Scholar
Poggie, J. & Kimmel, R. L. 1997 Disturbance evolution and breakdown to turbulence in a hypersonic boundary layer: instantaneous structure. AIAA Paper 97-0556.CrossRefGoogle Scholar
Saric, W. S., Kozlov, V. V. & Levchenko, V. Y. 1984 Forced and unforced subharmonic resonance in boundary layer transition. AIAA Paper 84-0007.CrossRefGoogle Scholar
Shiplyuk, A. N., Bountin, D. A., Maslov, A. A. & Chokani, N. 2003 a Nonlinear mechanisms of the initial stage of the hypersonic boundary layer transition. J. Appl. Mech. Tech. Phys. 44, 654659.CrossRefGoogle Scholar
Shiplyuk, A., Maslov, A., Bountin, D. & Chokani, N. 2003 b Nonlinear interactions of second mode instability with natural and artificial disturbances. AIAA Paper 2003-0787.CrossRefGoogle Scholar
Stetson, K., Thompson, E., Donaldson, J. & Siler, L. 1983 Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone. AIAA Paper 83-1761.Google Scholar