Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T03:05:30.481Z Has data issue: false hasContentIssue false

Evaporation of water: evaporation rate and collective effects

Published online by Cambridge University Press:  09 June 2016

Odile Carrier
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
Noushine Shahidzadeh-Bonn
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
Rojman Zargar
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
Mounir Aytouna
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
Mehdi Habibi
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
Jens Eggers
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
Daniel Bonn*
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.Google Scholar
Brzoska, J. B., Shahidzadeh, N. & Rondelez, F. 1992 Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings. Nature 360, 719721.CrossRefGoogle Scholar
Cachile, M., Benichou, O. & Cazabat, A.-M. 2002a Evaporating droplets of completely wetting liquids. Langmuir 18, 79857990.CrossRefGoogle Scholar
Cachile, M., Benichou, O., Poulard, C. & Cazabat, A.-M. 2002b Evaporating droplets. Langmuir 18, 80708078.Google Scholar
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6, 25912612.Google Scholar
Crafton, E. F. & Black, W. Z. 2004 Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces. Intl J. Heat Mass Transfer 47, 11871200.CrossRefGoogle Scholar
David, S., Sefiane, K. & Tadrist, L. 2007 Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A 298, 108114.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756765.Google Scholar
Eggers, J. & Pismen, L. M. 2010 Nonlocal description of evaporating drops. Phys. Fluids 22, 112101.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Erbil, H. Y. 2012 Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170, 6786.Google Scholar
Gelderblom, H., Marin, A. G., Nair, H., van Houselt, A., Lefferts, L., Snoeijer, J. H. & Lohse, D. 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83, 039901; (erratum).Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2014 Table of Integrals Series and Products. Academic.Google Scholar
Jackson, J. D. 1975 Classical Electrodynamics. Wiley.Google Scholar
Kelly-Zion, P. L., Pursell, C. J., Vaidya, S. & Batra, J. 2011 Evaporation of sessile drops under combined diffusion and natural convection. Colloids Surf. A 381, 3136.CrossRefGoogle Scholar
Larson, R. G. 2014 Transport and deposition patterns in drying sessile droplets. AIChE J. 60, 15381571.Google Scholar
Popov, Y. O. 2005 Evaporative deposition patterns revisited: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.Google Scholar
Poulard, C., Benichou, O. & Cazabat, A.-M. 2003 Freely receding evaporating droplets. Langmuir 19, 88288834.Google Scholar
Schäfle, C., Bechinger, C., Rinn, B., David, C. & Leiderer, P. 1999 Cooperative evaporation in ordered arrays of volatile droplets. Phys. Rev. Lett. 83, 53025305.Google Scholar
Shahidzadeh, N. & Desarnaud, J. 2012 Damage in porous media: role of the kinetics of salt (re)crystallization. Eur. Phys. J. Appl. Phys. 60, 24205.CrossRefGoogle Scholar
Shahidzadeh-Bonn, N., Rafaï, S., Azouni, A. & Bonn, D. 2006 Evaporating droplets. J. Fluid Mech. 59, 307313.CrossRefGoogle Scholar
Smith, G. S. & Barakat, R. 1975 Electrostatics of two conducting spheres in contact. Appl. Sci. Res. 30, 418.Google Scholar
Sobac, B. & Brutin, D. 2011 Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation. Langmuir 27, 14999.Google Scholar
Starov, V. & Sefiane, K. 2009 On evaporation rate and interfacial temperature of volatile sessile drops. Colloids Surf. A 333, 170174.Google Scholar
Stauber, J. M., Wilson, S. K. & Duffy, B. R. 2015 Evaporation of droplets on strongly hydrophobic substrates. Langmuir 31, 36533660.Google Scholar