Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-05T02:43:11.649Z Has data issue: false hasContentIssue false

Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation

Published online by Cambridge University Press:  22 May 2014

Stéphanie Veran-Tissoires
Affiliation:
Université de Toulouse; INPT, UPS; IMFT, Avenue Camille Soula, 31400 Toulouse, France CNRS; IMFT, 31400 Toulouse, France
Marc Prat*
Affiliation:
Université de Toulouse; INPT, UPS; IMFT, Avenue Camille Soula, 31400 Toulouse, France CNRS; IMFT, 31400 Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

Precipitation of sodium chloride driven by evaporation at the surface of a porous medium is studied from a combination of experiments, continuum simulations, pore network simulations and a simple efflorescence growth model on a lattice. The distribution of ions concentration maxima at the porous medium surface, which are seen as the incipient precipitation spots, is shown to be strongly dependent on the factors affecting the velocity field within the porous medium owing to the significance of advection on ion transport. These factors include the evaporation flux distribution at the surface at Darcy’s scale as well as the scale of surface menisci and the internal disorder of the porous medium, which induce spatial fluctuations in the velocity field. The randomness of the velocity field within the porous medium and at its surface explains the discrete nature of incipient precipitation spots at the surface of a porous medium. Experiments varying the mean size of the beads forming the porous medium lead to the identification of two main types of efflorescence, referred to as crusty and patchy, and the impact of these two types on evaporation is completely different. The crusty efflorescence severely reduces the evaporation rate whereas the patchy efflorescence can enhance the evaporation rate compared with pure water. The crusty–patchy transition is analysed from a simple growth model on a lattice taking into account the porous nature of efflorescence structures.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bear, J. 1972 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2002 Transport Phenomena. 2nd edn. John Wiley and Sons.Google Scholar
Blunt, M. J., Jackson, M. D., Piri, M. & Valvatne, P. H. 2002 Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25, 10691089.Google Scholar
Carey, V. P. 2008 Liquid–Vapor Phase Change Phenomena. 2nd edn. Taylor & Francis.Google Scholar
Chatterji, S. 2000 A discussion of the paper ‘Crystallisation in pores’ by G.W. Scherer. Cem. Concr. Res. 30, 669671.CrossRefGoogle Scholar
Coussy, O. 2006 Deformation and stress from in-pore drying-induced crystallization of salt. J. Mech. Phys. Solids 54, 15171547.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.Google Scholar
Desarnaud, J., Derluyn, H., Carmeliet, J., Bonn, D. & Shahidzadeh, N. 2014 Metastability limit for the nucleation of NaCl crystals in confinement. J. Phys. Chem. Lett. 5, 890895.CrossRefGoogle ScholarPubMed
Dullien, F. A. L. & Dhawan, G. K. 1974 Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry. J. Colloid Interface Sci. 47 (2), 337349.Google Scholar
Eloukabi, H., Sghaier, N., Ben Nasrallah, S. & Prat, M. 2013 Experimental study of the effect of sodium chloride on drying of porous media: the crusty-patchy efflorescence transition. Intl J. Heat Mass Transfer 56 (1–2), 8093.Google Scholar
Espinosa-Marzal, R. M. & Scherer, G. W. 2010 Advances in understanding damage by crystallization: discrete and continuum approaches. Acc. Chem. Res. 43 (6), 897905.Google Scholar
Goudie, A. & Viles, H. 1997 Salt Weathering Hazards. John Wiley & Sons.Google Scholar
Guglielmini, L., Gontcharov, A., Aldykiewicz, A. J. & Stone, H. A. 2008 Drying of salt solutions in porous materials: intermediate-time dynamics and efflorescence. Phys. Fluids 20, 077101.Google Scholar
Gupta, S., Terheiden, K., Pel, L. & Sawdy, A. 2012 Influence of ferrocyanide inhibitors on the transport and crystallization processes of sodium chloride in porous building materials. Cryst. Growth Des. 12 (8), 38883898.Google Scholar
Hidri, F., Sghaier, N., Eloukabi, H., Prat, M. & Ben Nasrallah, S. 2013 Porous medium coffee ring effect and other factors affecting the first crystallization time of sodium chloride at the surface of a drying porous medium. Phys. Fluids 25, 127101.CrossRefGoogle Scholar
Huinink, H. P., Pel, L. & Michels, M. A. J. 2002 How ions distribute in a drying porous medium: a simple model. Phys. Fluids 14 (4), 13891395.CrossRefGoogle Scholar
Joekar-Niasar, V., Hassanizadeh, S. M. & Dahle, H. 2010 Dynamic pore-network modeling of drainage in two-phase flow. J. Fluid Mech. 655, 3871.Google Scholar
Kim, J. -H., Ochoa, A. & Whitaker, S. 1987 Diffusion in anisotropic porous media. Trans. Porous Med. 2 (4), 327356.Google Scholar
Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.Google Scholar
Masoodi, R., Pillai, K. M. & Varanasi, P. P. 2007 Darcy’s law-based models for liquid absorption in polymer wicks. AIChE J. 53 (11), 27692782.Google Scholar
Masmoudi, W. & Prat, M. 1991 Heat and mass transfer between a porous medium and a parallel external flow, application to drying of capillary porous materials. Intl J. Heat Mass Transfer 34 (8), 19751989.Google Scholar
Nachshon, U., Weisbrod, N., Dragila, M. I. & Grader, A. 2011 Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 47, W03513.Google Scholar
Noiriel, C., Renard, F., Doan, M. L. & Gratier, J. P. 2010 Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem. Geol. 269 (3–4), 197209.Google Scholar
Norouzi Rad, M., Shokri, N. & Sahimi, M. 2013 Pore-scale dynamics of salt precipitation in drying porous media. Phys. Rev. E 88, 032404.Google Scholar
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Publ. Co..Google Scholar
Pel, L., Huinink, H. & Kopinga, K. 2002 Ion transport and crystallization in inorganic building materials as studied by nuclear magnetic resonance. Appl. Phys. Lett. 81, 28932895.Google Scholar
Peysson, Y., Bazin, B., Magnier, C., Kohler, E. & Youssef, S. 2011 Permeability alteration due to salt precipitation driven by drying in the context of ${\mathrm{CO}}_{2}$ injection. Energy Procedia 4, 43874394.Google Scholar
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336350.Google Scholar
Puyate, Y. T. & Lawrence, C. J. 1998 Wick action at moderate Péclet number. Phys. Fluids 10 (8), 21142116.Google Scholar
Puyate, Y. T. & Lawrence, C. J. 1999 Effect of solute parameters on wick action in concrete. Chem. Engng Sci. 54, 42574265.Google Scholar
Puyate, Y. T., Lawrence, C. J., Buenfeld, N. R. & McLoughlin, I. M. 1998 Chloride transport models for wick action in concrete at large Péclet number. Phys. Fluids 10 (3), 566575.Google Scholar
Robinson, R. A. 1945 The vapour pressures of solutions of potassium chloride and sodium chloride. Trans. R. Soc. New Zealand 75 (2), 203217.Google Scholar
Rodriguez-Navarro, C. & Doehne, E. 1999 Salt weathering: influence of evaporation rate, supersaturation and crystallisation pattern. Earth Surf. Process. Landf. 24, 191209.Google Scholar
Saad, Y.1994 SPARSKIT: a basic toolkit for sparse matrix computation.http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/paper.ps.Google Scholar
Scherer, G. W. 2004 Stress from crystallization of salt. Cem. Concr. Res. 34, 16131624.Google Scholar
Schiro, M., Ruiz-Agudo, E. & Rodriguez-Navarro, C. 2012 Damage mechanisms of porous materials due to in-pore salt crystallization. Phys. Rev. Lett. 109, 265503.Google Scholar
Sghaier, N. & Prat, M. 2009 Effect of efflorescence formation on drying kinetics of porous media. Trans. Porous Med. 80 (3), 441454.Google Scholar
Sghaier, N., Prat, M. & Ben Nasrallah, S. 2006 On the influence of sodium chloride concentration on equilibrium contact angle. Chem. Engng J. 122, 4753.Google Scholar
Sghaier, N., Prat, M. & Ben Nasrallah, S. 2007 On ions transport during drying in a porous medium. Trans. Porous Med. 62, 243274.Google Scholar
Shahidzadeh, N. & Desarnaud, J. 2012 Damage in porous media: role of the kinetics of salt (re)crystallization. Eur. Phys. J. Appl. Phys. 60 (2), 24205.Google Scholar
Suzuki, M. & Maeda, S. 1968 On the mechanism of drying of granulars beds. J. Chem. Engng Japan 1 (1), 2631.Google Scholar
Svendsen, J. B. 2003 Parabolic halite dunes on the Salar de Uyuni, Bolivia. Sedim. Geol. 155, 147156.CrossRefGoogle Scholar
Theoulakis, P. & Moropoulou, A. 1999 Salt crystal growth as weathering mechanism of porous stone on historicmasonry. J. Porous Mater. 6, 345358.Google Scholar
Vafai, K. 1984 Convective flowand heat transfer in variable-porositymedia. J. Fluid Mech. 147, 233259.Google Scholar
Veran-Tissoires, S.2011 Sur le phénomène de cristallisation discrète à la surface ou à l’intérieur d’un milieu poreux. PhD thesis (in French), University of Toulouse.Google Scholar
Veran-Tissoires, S., Geoffroy, S., Marcoux, M. & Prat, M. 2013 Wicking in Porous Materials: Traditional and Modern Modeling Approaches (ed. Masoodi, R. & Pillai, K. M.), chap. 8, Taylor and Francis.Google Scholar
Veran-Tissoires, S., Marcoux, M. & Prat, M. 2012a Discrete salt crystallization at the surface of a porous medium. Phys. Rev. Lett. 108, 054502.Google Scholar
Veran-Tissoires, S., Marcoux, M. & Prat, M. 2012b Salt crystallization at the surface of a heterogeneous porous medium. Europhys. Lett. 98, 34005.CrossRefGoogle Scholar