Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T15:31:24.114Z Has data issue: false hasContentIssue false

Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

Published online by Cambridge University Press:  20 June 2017

Christian Diddens*
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Huanshu Tan
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Pengyu Lv
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Michel Versluis
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
J. G. M. Kuerten
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands Faculty EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Xuehua Zhang
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Soft Matter & Interfaces Group, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
Detlef Lohse*
Affiliation:
Physics of Fluids group, Department of Science and Technology, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The Greek aperitif Ouzo is not only famous for its specific anise-flavoured taste, but also for its ability to turn from a transparent miscible liquid to a milky-white coloured emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions (Tan et al., Proc. Natl Acad. Sci. USA, vol. 113 (31), 2016, pp. 8642–8647). Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water–ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-particle-image-velocimetry measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennacer, R. & Sefiane, K. 2014 Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749, 649665.CrossRefGoogle Scholar
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.CrossRefGoogle Scholar
Cheng, A. K. H., Soolaman, D. M. & Yu, H.-Z. 2006 Evaporation of microdroplets of ethanol–water mixtures on gold surfaces modified with self-assembled monolayers. J. Phys. Chem. B 110 (23), 1126711271.Google Scholar
Christy, J. R. E., Hamamoto, Y. & Sefiane, K. 2011 Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106 (20), 205701.Google Scholar
Chu, S. & Prosperetti, A. 2016 Dissolution and growth of a multicomponent drop in an immiscible liquid. J. Fluid Mech. 798, 787811.CrossRefGoogle Scholar
Cira, N. J., Benusiglio, A. & Prakash, M. 2015 Vapour-mediated sensing and motility in two-component droplets. Nature 519 (7544), 446450.Google Scholar
Deegan, R., Bakajin, O., Dupont, T., Huber, G., Nagel, S. & Witten, T. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756765.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.CrossRefGoogle Scholar
Diddens, C. 2017 Detailed finite element method modeling of evaporating multi-component droplets. J. Comput. Phys. 340, 670687.CrossRefGoogle Scholar
Diddens, C., Kuerten, J. G. M., van der Geld, C. W. M. & Wijshoff, H. M. A. 2017 Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426436.Google Scholar
Dietrich, E., Rump, M., Lv, P., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016a Segregation in dissolving binary-component sessile droplets. J. Fluid Mech. 812, 349369.Google Scholar
Dietrich, E., Wildeman, S., Visser, C. W., Hofhuis, K., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016b Role of natural convection in the dissolution of sessile droplets. J. Fluid Mech. 794, 4567.CrossRefGoogle Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329.CrossRefGoogle Scholar
Farrell, P. E., Piggott, M. D., Pain, C. C., Gorman, G. J. & Wilson, C. R. 2009 Conservative interpolation between unstructured meshes via supermesh construction. Comput. Meth. Appl. Mech. Engng 198 (33–36), 26322642.CrossRefGoogle Scholar
Girard, F., Antoni, M., Faure, S. & Steinchen, A. 2006 Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22 (26), 1108511091.CrossRefGoogle ScholarPubMed
Girard, F., Antoni, M. & Sefiane, K. 2008 On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24 (17), 92079210.Google Scholar
González, B., Calvar, N., Gómez, E. & Domínguez, Á. 2007 Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 39 (12), 15781588.CrossRefGoogle Scholar
Grolier, J.-P. E. & Wilhelm, E. 1981 Excess volumes and excess heat capacities of water + ethanol at 298.15 K. Fluid Phase Equilib. 6 (3–4), 283287.Google Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.Google Scholar
Hu, H. & Larson, R. G. 2005 Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.Google Scholar
Innocenzi, P., Malfatti, L., Costacurta, S., Kidchob, T., Piccinini, M. & Marcelli, A. 2008 Evaporation of ethanol and ethanol–water mixtures studied by time-resolved infrared spectroscopy. J. Phys. Chem. A 112 (29), 65126516.CrossRefGoogle ScholarPubMed
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.Google Scholar
Langmuir, I. & Schaefer, V. J. 1943 Rates of evaporation of water through compressed monolayers on water. J. Franklin Inst. 235 (2), 119162.Google Scholar
Liu, C., Bonaccurso, E. & Butt, H.-J. 2008 Evaporation of sessile water/ethanol drops in a controlled environment. Phys. Chem. Chem. Phys. 10 (47), 7150.Google Scholar
Logg, A. 2012 Automated Solution of Differential Equations by the Finite Element Method the FEniCS Book. Springer.Google Scholar
Lohse, D. & Zhang, X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 9811035.CrossRefGoogle Scholar
Machrafi, H., Rednikov, A., Colinet, P. & Dauby, P. C. 2010 Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349 (1), 331353.Google Scholar
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.CrossRefGoogle Scholar
Oliveira, J. L. G., van der Geld, C. W. M. & Kuerten, J. G. M. 2015 Lagrangian velocity and acceleration statistics of fluid and inertial particles measured in pipe flow with 3d particle tracking velocimetry. Intl J. Multiphase Flow 73, 97107.Google Scholar
Pařez, S., Guevara-Carrion, G., Hasse, H. & Vrabec, J. 2013 Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems. Phys. Chem. Chem. Phys. 15 (11), 3985.CrossRefGoogle ScholarPubMed
Popov, Y. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.Google Scholar
Rodrigues, V. M., Rosa, P. T. V., Marques, M. O. M., Petenate, A. J., Meireles, M. & Angela, A. 2003 Supercritical extraction of essential oil from aniseed (pimpinella anisum L) using CO2 : Solubility, kinetics, and composition data. J. Agr. Food Chem. 51 (6), 15181523.CrossRefGoogle ScholarPubMed
Rowan, S. M., Newton, M. I., Driewer, F. W. & McHale, G. 2000 Evaporation of microdroplets of azeotropic liquids. J. Phys. Chem. B 104 (34), 82178220.CrossRefGoogle Scholar
Sefiane, K. & Bennacer, R. 2011 An expression for droplet evaporation incorporating thermal effects. J. Fluid Mech. 667, 260271.Google Scholar
Sefiane, K., David, S. & Shanahan, M. E. R. 2008a Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112 (36), 1131711323.Google Scholar
Sefiane, K., Moffat, J. R., Matar, O. K. & Craster, R. V. 2008b Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 93 (7), 074103.CrossRefGoogle Scholar
Sefiane, K., Tadrist, L. & Douglas, M. 2003 Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration. Intl J. Heat Mass Transfer 46 (23), 45274534.CrossRefGoogle Scholar
Shi, L., Shen, P., Zhang, D., Lin, Q. & Jiang, Q. 2009 Wetting and evaporation behaviors of water–ethanol sessile drops on PTFE surfaces. Surf. Interface Anal. 41 (12–13), 951955.CrossRefGoogle Scholar
Sitnikova, N. L., Sprik, R., Wegdam, G. & Eiser, E. 2005 Spontaneously formed trans-anethol/water/alcohol emulsions: mechanism of formation and stability. Langmuir 21 (16), 70837089.Google Scholar
Sobac, B. & Brutin, D. 2012 Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24 (3), 032103.Google Scholar
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl. Acad. Sci. USA 113 (31), 86428647.Google Scholar
Tan, H., Diddens, C., Versluis, M., Butt, H.-J., Lohse, D. & Zhang, X. 2017 Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matt. 13, 27492759.Google Scholar
Thielicke, W.2014 The flapping flight of birds: analysis and application. PhD thesis, Rijksuniversiteit Groningen.Google Scholar
Thielicke, W. & Stamhuis, E. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Software 2 (1), e30.Google Scholar
Vazquez, G., Alvarez, E. & Navaza, J. M. 1995 Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Engng Data 40 (3), 611614.Google Scholar
Vitale, S. A. & Katz, J. L. 2003 Liquid droplet dispersions formed by homogeneous liquid–liquid nucleation: ‘the Ouzo effect’. Langmuir 19 (10), 41054110.Google Scholar
Wang, Z., Peng, X.-F., Mujumdar, A. S., Su, A. & Lee, D.-J. 2008 Evaporation of ethanol–water mixture drop on horizontal substrate. Dry. Technol. 26 (6), 806810.Google Scholar
Yano, R., Fukuda, Y. & Hashi, T. 1988 Thermal conductivity measurement of water–ethanol solutions by the laser-induced transient grating method. Chem. Phys. 124 (2), 315319.CrossRefGoogle Scholar
Zhang, X., Lu, Z., Tan, H., Bao, L., He, Y., Sun, C. & Lohse, D. 2015 Formation of surface nanodroplets under controlled flow conditions. Proc. Natl. Acad. Sci. USA 112 (30), 92539257.Google Scholar
Zhang, X. H. & Ducker, W. 2007 Formation of interfacial nanodroplets through changes in solvent quality. Langmuir 23 (25), 1247812480.Google Scholar
Zhong, X. & Duan, F. 2016 Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles. Eur. Phys. J. E 39 (2), 18.Google Scholar
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T. & Seinfeld, J. H. 2011 New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11 (17), 91559206.Google Scholar
Zuend, A., Marcolli, C., Luo, B. P. & Peter, T. 2008 A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 8 (16), 45594593.Google Scholar

Diddens et al. supplementary movie

Simulation of the pure water droplet (figure 3)

Download Diddens et al. supplementary movie(Video)
Video 25.5 MB

Diddens et al. supplementary movie

Simulation of the binary water-ethanol droplet (figure 4)

Download Diddens et al. supplementary movie(Video)
Video 48.4 MB

Diddens et al. supplementary movie

Simulation of the ternary Ouzo droplet (figure 6)

Download Diddens et al. supplementary movie(Video)
Video 70.3 MB

Diddens et al. supplementary movie

Velocity in the water-ethanol droplet obtained by the micro-PIV technique (figure 9(a-f))

Download Diddens et al. supplementary movie(Video)
Video 70.7 MB

Diddens et al. supplementary movie

Ethanol concentration at the interface and velocity near the substrate in the water-ethanol droplet obtained by numerical simulation (figure 8, figure 9(g-l))

Download Diddens et al. supplementary movie(Video)
Video 88.8 MB

Diddens et al. supplementary movie

Flow in the ternary Ouzo droplet by visualizing the oil microdroplets via confocal microscopy (figure 11)

Download Diddens et al. supplementary movie(Video)
Video 67.5 MB

Diddens et al. supplementary movie

Behavior of the oil microdroplets at the rim and on the substrate by confocal microscopy (figure 12)

Download Diddens et al. supplementary movie(Video)
Video 71 MB