Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T05:38:59.787Z Has data issue: false hasContentIssue false

The entrainment interface

Published online by Cambridge University Press:  29 March 2006

O. M. Phillips
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University

Abstract

A theory is developed to describe the evolution of the entrainment interface in turbulent flow, in which the surface is convoluted by the large-scale eddies of the motion and at the same time advances relative to the fluid as a result of the micro-scale entrainment process. A pseudo-Lagrangian description of the process indicates that the interface is characterized by the appearance of ‘billows’ of negative curvature, over which surface area is, on average, being generated, separated by re-entrant wedges (lines of very large positive curvature) where surface area is consumed. An alternative Eulerian description allows calculation of the development of the interfacial configuration when the velocity field is prescribed. Several examples are considered in which the prescribed velocity field in the z direction is of the general form w = Wf(x – Ut), where the maximum value of the function f is unity. These indicate the importance of leading points on the surface which are such that small disturbances in the vicinity will move away from the point in all directions. The necessary and sufficient condition for the existence of one or more leading points on the surface is that U [les ] V, the speed of advance of an element of the surface relative to the fluid element at the same point. The existence of leading points is accompanied by the appearance of line discontinuities in the surface slope re-entrant wedges, In these circumstances, the overall speed of advance of the convoluted surface is found to be W + (V2U2)½, where W is the maximum outwards velocity in the region; this result is independent of the distribution f.

When the speed U with which an ‘eddy’ moves relative to the outside fluid is greater than the speed of advance V of an element of the front, the interface develops neither leading points nor discontinuities in slope; the amplitude of the surface convolutions and the overall entrainment speed are both reduced greatly. In a turbulent flow, therefore, the large-scale motions influencing entrainment are primarily those that move slowly relative to the outside fluid (with relative speed less than V). The experimental results of Kovasznay, Kibens & Blackwelder (1970) are reviewed in the light of these conclusions. It appears that in their experiments the entrainment speed V is of the order fifteen times the Kolmogorov velocity, the large constant of proportionality being apparently the result of augmentation by micro-convolutions of the interface associated with small and meso-scale eddies of the turbulence.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Corrsin, S. 1943 N.A.C.A. Wartime Rep. W-94.
Corrsin, S. & Kistler, A. L. 1955 N.A.C.A. Rep. 1244.
Favre, A., Gaviglio, J. & Dumas, R. 1957 J. Fluid Mech. 2, 31342.
Favre, A., Gaviglio, J. & Dumas, R. 1958 J. Fluid Mech. 3, 34456.
Favre, A., Gaviglio, J. & Dumas, R. 1967 Phys. FZuids, 10, S138.
Kaplan, R. E. & Laufer, J. 1968 Proc. 12th Int. Cong. Mech. (To be published).
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283325.
Thorpe, S. 1969 J. Fluid Mech. 39, 2548.
Townsend, A. A. 1948 Aust. J. Sci. Res. 1, 16174.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Weatherburn, C. E. 1927 Quart. J. Pure & Appl. Math. 50, 27296.
Weatherburn, C. E. 1955 Differential Geometry of Three Dimensions. Cambridge University Press.