Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T05:36:04.678Z Has data issue: false hasContentIssue false

Enhanced effects from tiny flexible in-wall blips and shear flow

Published online by Cambridge University Press:  28 April 2015

Luisa Pruessner
Affiliation:
Department of Mathematics, University College London, London WC1E 6BT, UK
Frank Smith*
Affiliation:
Department of Mathematics, University College London, London WC1E 6BT, UK
*
Email address for correspondence: [email protected]

Abstract

Fluid motion at high Reynolds number over a flexible in-wall blip (a compliant bump or dip in an otherwise fixed wall) is considered theoretically for a very short blip buried low inside a boundary layer. Only the near-wall shear of the oncoming flow affects the local motion past the tiny blip. Slowly evolving features are examined first to allow for variations in the incident flow. Linear and nonlinear solutions show that at certain parameter values (eigenvalues) intensifications occur in which the interactive effect on flow and blip shape is larger by an order of magnitude than at most parameter values. Similar findings apply to the boundary layer with several tiny blips present or to channel flows with blips of almost any length. These intensifications lead on to fully nonlinear unsteady motion as a second stage, after some delay, thus combining with finite-time breakups to form a distinct path into transition of the flow.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, A. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.CrossRefGoogle Scholar
Benjamin, T. B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 9, 513532.CrossRefGoogle Scholar
Brown, S. N. & Daniels, P. G. 1975 On the viscous flow about the trailing edge of a rapidly oscillating plate. J. Fluid Mech. 67, 743761.CrossRefGoogle Scholar
Carpenter, P. W. & Garrad, A. D. 1985 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part I, Tollmien–Schlichting instabilities. J. Fluid Mech. 165, 465510.CrossRefGoogle Scholar
Carpenter, P. W. & Sen, P. K. 1990 Effects of boundary-layer growth on the linear regime of transition over compliant walls. In Laminar–Turbulent Transition. IUTAM Symp, Toulouse France, pp. 123128. Springer.CrossRefGoogle Scholar
Cassel, K. W. & Conlisk, A. T. 2014 Unsteady separation in vortex-induced boundary layers. Phil. Trans. R. Soc. Lond. A 372, 119.Google ScholarPubMed
Davies, C. J., Bowles, R. I. & Smith, F. T. 2003 On the spiking stages in deep transition and unsteady separation. J. Engng Maths 45, 227245.CrossRefGoogle Scholar
Davies, C. J. & Carpenter, P. W. 1997 Instabilities in a plane channel flow between compliant walls. J. Fluid Mech. 352, 205243.CrossRefGoogle Scholar
Fitt, A. D. & Pope, M. P. 2001 The unsteady motion of two-dimensional flags with bending stiffness. J. Engng Maths 40, 227248.CrossRefGoogle Scholar
Forbes, L. K. 1988 Surface waves of large amplitude beneath an elastic sheet. Part 2, Galerkin solution. J. Fluid Mech. 188, 491508.CrossRefGoogle Scholar
Gad-el-Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.CrossRefGoogle Scholar
Gajjar, J. S. B. & Sibanda, P. 1996 The hydrodynamic stability of channel flow with compliant boundaries. Theor. Comput. Fluid Dyn. 8, 105129.CrossRefGoogle Scholar
Gargano, F., Sammartino, M., Sciacca, V. & Cassel, K. W. 2014 Analysis of complex singularities in high-Reynolds-numbers Navier–Stokes solutions. J. Fluid Mech. 747, 381421.CrossRefGoogle Scholar
Green, J. E. F., Ovenden, N. C. & Smith, F. T. 2009 Flow in a multi-branching vessel with compliant walls. J. Engng Maths 64, 353365.CrossRefGoogle Scholar
Guneratne, J. C. & Pedley, T. J. 2006 High-Reynolds-number steady flow in a collapsible channel. J. Fluid Mech. 569, 151184.CrossRefGoogle Scholar
Hall, P. & Smith, F. T. 1982 A suggested mechanism for non-linear wall roughness effects on high Reynolds-number flow stability. Stud. Appl. Maths 66, 241265.CrossRefGoogle Scholar
Huebsch, W. W. 2006 Two-dimensional simulation of dynamic surface roughness for aerodynamic flow control. J. Aircraft 43, 353362.CrossRefGoogle Scholar
Huebsch, W. W., Gall, P. D., Hamburg, S. D. & Rothmayer, A. P. 2012 Dynamic roughness as a means of leading-edge separation flow control. J. Aircraft 49, 108115.CrossRefGoogle Scholar
Kudenatti, R. B., Bujurke, N. M. & Pedley, T. J. 2012 Stability of two-dimensional collapsible-channel flow at high Reynolds number. J. Fluid Mech. 705, 371386.CrossRefGoogle Scholar
Lagrée, P.-Y. 1994 Mixed convection at small Richardson number on triple-deck scales (‘Convection thermique mixte faible nombre de Richardson dans le cadre de la triple couche’). C. R. Acad. Sci. Paris II 318, 11671173.Google Scholar
Lagrée, P.-Y. 2000 Erosion and sedimentation of a bump in fluvial flow. C. R. Acad. Sci. Paris II 328, 869874.Google Scholar
Lagrée, P.-Y. 2007 Interactive boundary layer in a Hele Shaw cell. Z. Angew. Math. Mech. 87 (7), 486498.CrossRefGoogle Scholar
Luo, X. Y. & Pedley, T. J. 1996 A numerical simulation of unsteady flow in a two-dimensional collapsible channel. J. Fluid Mech. 314, 191225.CrossRefGoogle Scholar
Pedley, T. J. 2000 Blood flow in arteries and veins. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), Cambridge University Press.Google Scholar
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 Vortex induced boundary layer separation. Part 2. Unsteady interacting boundary layer theory. J. Fluid Mech. 232, 133165.CrossRefGoogle Scholar
Pihler-Puzović, D. & Pedley, T. J. 2013 Stability of high-Reynolds-number flow in a collapsible channel. J. Fluid Mech. 714, 536561.CrossRefGoogle Scholar
Pruessner, L.2013 Waves on flexible surfaces. PhD thesis, University College London, UK.Google Scholar
Rothmayer, A. P. & Smith, F. T. 1998 The Handbook of Fluid Dynamics (ed. Johnson, R. W.), chap. 23–25, CRC Press.Google Scholar
Schlichting, H. & Gersten, K. 2004 Boundary-Layer Theory. Springer.Google Scholar
Singh, K., Lister, J. R. & Vella, D. 2014 A fluid-mechanical model of elastocapillary coalescence. J. Fluid Mech. 745, 621646.CrossRefGoogle Scholar
Smith, F. T. 1976a Flow through constricted or dilated pipes and channels: part 1. Q. J. Mech. Appl. Maths 29, 343364.CrossRefGoogle Scholar
Smith, F. T. 1976b Flow through constricted or dilated pipes and channels: part 2. Q. J. Mech. Appl. Maths 29, 365376.CrossRefGoogle Scholar
Smith, F. T. 1977 Upstream interactions in channel flows. J. Fluid Mech. 79, 631655.CrossRefGoogle Scholar
Smith, F. T. 1979 On the non parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91109.Google Scholar
Smith, F. T. 1982 On the high Reynolds number theory of laminar flows. IMA J. Appl. Maths 28, 207281.CrossRefGoogle Scholar
Smith, F. T. 1988 Finite time break up can occur in any unsteady interacting boundary layer. Mathematika 35, 256273.CrossRefGoogle Scholar
Smith, F. T. & Daniels, P. G. 1981 Removal of Goldstein’s singularity at separation in flow past obstacles in wall layers. J. Fluid Mech. 110, 138.CrossRefGoogle Scholar
Sobey, I. 1980 On flow through furrowed channels. Part 1. Calculated flow patterns. J. Fluid Mech. 86, 126.CrossRefGoogle Scholar
Sobey, I. 2000 Introduction to Interactive Boundary Layer Theory. Oxford University Press.CrossRefGoogle Scholar
Squire, V. A. 1996 Moving Loads on Ice Plates, vol. 45. Springer.CrossRefGoogle Scholar
Stewart, P. S., Waters, S. L. & Jensen, O. E. 2009 Local and global instabilities of flow in a flexible-walled channel. Eur. J. Mech. (B/Fluids) 28, 541557.CrossRefGoogle Scholar
Stewartson, K. 1970 On laminar boundary layers near corners. Q. J. Mech. Appl. Maths 23, 137152.CrossRefGoogle Scholar
Takagi, D. & Balmforth, N. J. 2011 Peristaltic pumping of rigid objects in an elastic tube. J. Fluid Mech. 672, 219244.CrossRefGoogle Scholar
Vella, D., Kim, H.-Y. & Mahadevan, L. 2004 The wall-induced motion of a floating flexible train. J. Fluid Mech. 502, 8998.CrossRefGoogle Scholar
Xu, F., Billingham, J. & Jensen, O. E. 2014 Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment. J. Fluid Mech. 746, 368404.CrossRefGoogle Scholar