Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:28:22.298Z Has data issue: false hasContentIssue false

Enhanced ablation of a vertical ice wall due to an external freshwater plume

Published online by Cambridge University Press:  28 November 2016

Craig D. McConnochie*
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
Ross C. Kerr
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
*
Email address for correspondence: [email protected]

Abstract

We investigate the effect of an external freshwater plume on the dissolution of a vertical ice wall in salty water using laboratory experiments. We measure the plume velocity, the ablation velocity of the ice and the temperature at the ice wall. The freshwater volume flux, $Q_{s}$, is varied between experiments to determine where the resultant wall plume transitions from being dominated by the distributed buoyancy flux due to dissolution of the ice, to being dominated by the initial buoyancy flux, $B_{s}$. We find that when $B_{s}$ is significantly larger than the distributed buoyancy flux from dissolution, the plume velocity is uniform with height and is proportional to $B_{s}^{1/3}$, the interface temperature is independent of $B_{s}$, and the ablation velocity increases with $B_{s}$.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.Google Scholar
Beaird, N., Straneo, F. & Jenkins, W. 2015 Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett. 42, 77057713.Google Scholar
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A. & Stearns, L. A. 2015 Modelling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 21692185.CrossRefGoogle Scholar
Cenedese, C. & Gatto, V. M. 2016 Impact of two plumes’ interaction on submarine melting of tidewater glaciers: a laboratory study. J. Phys. Oceanogr. 46, 361367.Google Scholar
Ellison, T. H. & Turner, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423448.CrossRefGoogle Scholar
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic.Google Scholar
Fried, M. J., Catania, G. A., Bartholomaus, T. C., Duncan, D., Davis, M., Stearns, L. A., Nash, J., Shroyer, E. & Sutherland, D. 2015 Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 93289336.Google Scholar
Gayen, B., Griffiths, R. W. & Kerr, R. C. 2016 Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech. 798, 284298.CrossRefGoogle Scholar
Grella, J. J. & Faeth, G. M. 1975 Measurements in a two-dimensional thermal plume along a vertical adiabatic wall. J. Fluid Mech. 71 (4), 701710.CrossRefGoogle Scholar
Hogg, C. A. R.2014 The flow of rivers into lakes: experiments and models. PhD thesis, University of Cambridge.Google Scholar
Hogg, C. A. R., Dalziel, S. B., Huppert, H. E. & Imberger, J.2016 Inclined gravity currents filling basins: peeling detrainment and its implications for transport and vertical structure in basins. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Holland, D. M. & Jenkins, A. 1999 Modelling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 17871800.Google Scholar
Jenkins, A. 1991 A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. 96 (C11), 2067120677.CrossRefGoogle Scholar
Jenkins, A. 2011 Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 22792294.Google Scholar
Kerr, R. C. 1994a Dissolving driven by vigorous compositional convection. J. Fluid Mech. 280, 287302.CrossRefGoogle Scholar
Kerr, R. C. 1994b Melting driven by vigorous compositional convection. J. Fluid Mech. 280, 255285.Google Scholar
Kerr, R. C. & McConnochie, C. D. 2015 Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech. 765, 211228.Google Scholar
Lane-Serff, G. F. 1995 On meltwater under ice shelves. J. Geophys. Res. 100, 69616965.CrossRefGoogle Scholar
McConnochie, C. D. & Kerr, R. C. 2016a The effect of a salinity gradient on the dissolution of a vertical ice face. J. Fluid Mech. 791, 589607.Google Scholar
McConnochie, C. D. & Kerr, R. C. 2016b The turbulent wall plume from a vertically distributed source of buoyancy. J. Fluid Mech. 787, 237253.Google Scholar
Motyka, R. J., Hunter, L., Echelmeyer, K. A. & Connor, C. 2003 Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol. 36, 5765.Google Scholar
Nokes, R.2014 Streams, Version 2.03: System Theory and Design. Department of Civil and Natural Resources Engineering, University of Canterbury, New Zealand.Google Scholar
Rignot, E., Koppes, M. & Velicogna, I. 2010 Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geosci. 3, 187191.Google Scholar
Sangras, R., Dai, Z. & Faeth, G. M. 1999 Mixture fraction statistics of plane self-preserving buoyant turbulent adiabatic wall plumes. Trans. ASME J. Heat Transfer 121, 837843.Google Scholar
Sciascia, R., Straneo, F., Cenedese, C. & Heimbach, P. 2013 Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans 118, 24922506.Google Scholar
Stearns, L. A., Smith, B. E. & Hamilton, G. S. 2008 Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geosci. 1, 827831.Google Scholar
Straneo, F. & Cenedese, C. 2015 The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mater. Sci. 7, 89112.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Wells, A. J. & Worster, M. G. 2008 A geophysical-scale model of vertical natural convection boundary layers. J. Fluid Mech. 609, 111137.Google Scholar
Wille, R. & Fernholz, H. 1965 Report on the first European mechanics colloquium, on the Coanda effect. J. Fluid Mech. 23, 801819.Google Scholar
Woods, A. W. 1992 Melting and dissolving. J. Fluid Mech. 239, 429448.CrossRefGoogle Scholar
Worster, M. G. & Huppert, H. E. 1983 Time-dependent density profiles in a filling box. J. Fluid Mech. 132, 457466.Google Scholar
Xu, Y., Rignot, E., Fenty, I. & Menemenlis, D. 2013 Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modelling and ocean observations. Geophys. Res. Lett. 40, 46484653.Google Scholar
Xu, Y., Rignot, E., Menemenlis, D. & Koppes, M. 2012 Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53 (60), 229234.Google Scholar