Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T21:44:45.276Z Has data issue: false hasContentIssue false

Ellipsoidal drop impact on a solid surface for rebound suppression

Published online by Cambridge University Press:  04 July 2014

Sungchan Yun
Affiliation:
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
Geunbae Lim*
Affiliation:
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
*
Email address for correspondence: [email protected]

Abstract

Non-axisymmetric drops can significantly alter impact dynamics via rebound suppression when compared to axisymmetric drops. In this study, we focus on ellipsoidal drop impact on a non-wetting surface and investigate the effects of the geometric aspect ratio ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{AR}$) and the Weber number (${\mathit{We}}$) on the dynamics and outcomes of impacts, both experimentally and numerically. Non-axisymmetric spreading features are characterized by scrutinizing the maximal extensions along the $x$-axis ($D_{mx}$) and $y$-axis ($D_{my}$) with respect to ${AR}$ and ${\mathit{We}}$. The ratio of the maximal extensions depends strongly on ${AR}$, following our scaling relation $D_{mx}/D_{my} \sim {AR}^{1/2}$. Experimental and numerical studies show that increasing ${AR}$ induces a high degree of axis switching during retraction, thereby resulting in the prevention of drop rebound, where axis switching denotes alternate expansion and contraction along the principal axes. We determine the transition between rebound and deposition (rebound suppression) over the ${AR}$ and ${\mathit{We}}$ domains and discuss the transition based on a non-axial distribution of the kinetic energy. The understanding of ellipsoidal drop impacts will potentially provide applications to surface patterning, cleaning, and cooling.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonini, C., Amirfazli, A. & Marengo, M. 2012 Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys. Fluids 24, 102104.CrossRefGoogle Scholar
Antonini, C., Villa, F., Bernagozzi, I., Amirfazli, A. & Marengo, M. 2013 Drop rebound after impact: the role of the receding contact angle. Langmuir 29, 1604516050.Google Scholar
Aytouna, M., Bartolo, D., Wegdam, G., Bonn, D. & Rafaï, S. 2010 Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp. Fluids 48, 4957.Google Scholar
Aziz, S. D. & Chandra, S. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43, 28412857.CrossRefGoogle Scholar
Bartolo, D., Boudaoud, A., Narcy, G. & Bonn, D. 2007 Dynamics of non-Newtonian droplets. Phys. Rev. Lett. 99, 174502.Google Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.Google Scholar
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405, 772775.CrossRefGoogle ScholarPubMed
Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.Google Scholar
Cho, S. J., Nam, H., Ryu, H. & Lim, G. 2013 A rubberlike stretchable fibrous membrane with anti-wettability and gas breathability. Adv. Funct. Mater. 23, 55775584.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Crooks, R., Cooper-Whitez, J. & Boger, D. V. 2001 The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem. Engng Sci. 56, 55755592.CrossRefGoogle Scholar
de Gans, B.-J., Duineveld, P. C. & Schubert, U. S. 2004 Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203213.Google Scholar
Deng, W. & Gomez, A. 2010 The role of electric charge in microdroplets impacting on conducting surfaces. Phys. Fluids 22, 051703.Google Scholar
Deng, W. & Gomez, A. 2011 Electrospray cooling for microelectronics. Intl J. Heat Mass Transfer 54, 22702275.CrossRefGoogle Scholar
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Lohse, D. & van der Meer, D. 2012 Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water. J. Fluid Mech. 701, 4058.Google Scholar
Gatne, K. P., Jog, M. A. & Manglik, R. M. 2009 Surfactant-induced modification of low Weber number droplet impact dynamics. Langmuir 25, 81228130.Google Scholar
Gunjal, P. R., Ranade, V. V. & Chaudhari, R. V. 2005 Dynamics of drop impact on solid surface: experiments and VOF simulations. AIChE J. 51, 5978.CrossRefGoogle Scholar
Kannan, R. & Sivakumar, D. 2008 Drop impact process on a hydrophobic grooved surface. Colloids Surf. A 317, 694704.CrossRefGoogle Scholar
Kim, J. 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28, 753767.Google Scholar
Lamb, H. 1945 Hydrodynamics, 6th edn. Dover Publications.Google Scholar
Lee, H. J. & Kim, H.-Y. 2004 Control of drop rebound with solid target motion. Phys. Fluids 16, 37153719.Google Scholar
Lee, M. W., Latthe, S. S., Yarin, A. L. & Yoon, S. S. 2013 Dynamic electrowetting-on-dielectric (DEWOD) on unstretched and stretched Teflon. Langmuir 29, 77587767.CrossRefGoogle ScholarPubMed
Lunkad, S. F., Buwa, V. V. & Nigam, K. D. P. 2007 Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem. Engng Sci. 62, 72147224.CrossRefGoogle Scholar
Mangili, S., Antonini, C., Marengo, M. & Amirfazli, A. 2012 Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matt. 8, 1004510054.Google Scholar
Mao, T., Kuhn, D. C. S. & Tran, H. 1997 Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43, 21692179.Google Scholar
Marengo, M., Antonini, C., Roisman, I. V. & Tropea, C. 2011 Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16, 292302.Google Scholar
Mourougou-Candoni, N., Prunet-Foch, B., Legay, F., Vignes-Adler, M. & Wong, K. 1997 Influence of dynamic surface tension on the spreading of surfactant solution droplets impacting onto a low-surface-energy solid substrate. J. Colloid Interface Sci. 192, 129141.CrossRefGoogle ScholarPubMed
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S. & Mostaghimi, J. 1996 Capillary effects during droplet impact on a solid surface. Phys. Fluids 8, 650659.Google Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. 2006 Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306312.Google Scholar
Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112124.Google Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.CrossRefGoogle Scholar
Rioboo, R., Voué, M., Vaillant, A. & De Coninck, J. 2008 Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24, 1407414077.Google Scholar
Smith, M. I. & Bertola, V. 2010 Effect of polymer additives on the wetting of impacting droplets. Phys. Rev. Lett. 104, 154502.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Wirth, W., Storp, S. & Jacobsen, W. 1991 Mechanisms controlling leaf retention of agricultural spray solutions. Pest. Sci. 33, 411420.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yun, S., Hong, J. & Kang, K. H. 2013 Suppressing drop rebound by electrically driven shape distortion. Phys. Rev. E 87, 033010.CrossRefGoogle Scholar
Zang, D., Wang, X., Geng, X., Zhang, Y. & Chen, Y. 2013 Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matt. 9, 394400.CrossRefGoogle Scholar
Supplementary material: PDF

Yun and Lim supplementary material

Yun and Lim supplementary material

Download Yun and Lim supplementary material(PDF)
PDF 1.3 MB