Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T21:44:01.568Z Has data issue: false hasContentIssue false

Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion

Published online by Cambridge University Press:  26 April 2006

Dalila Elhmaïdi
Affiliation:
Laboratoire de Météorologie Dynamique, CNRS, Ecole Normale Superieure, Paris Cedex 05, France
Antonello Provenzale
Affiliation:
Laboratoire de Météorologie Dynamique, CNRS, Ecole Normale Superieure, Paris Cedex 05, France Permanent address: Istituto di Cosmogeofisica del CNR, Corso Fiume 4, Torino, Italy.
Armando Babiano
Affiliation:
Laboratoire de Météorologie Dynamique, CNRS, Ecole Normale Superieure, Paris Cedex 05, France

Abstract

We discuss a series of numerical experiments on the dispersion of neutrally buoyant particles in two-dimensional turbulent flows. The topology of two-dimensional turbulence is parametrized in terms of the relative dominance of deformation or rotation; this leads to a segmentation of the turbulent field into hyperbolic and elliptic domains. We show that some of the characteristic structural domains of two-dimensional turbulent flows, namely coherent structures and circulation cells, generate particle traps and peculiar accelerations which induce several complex properties of the particle dispersion processes at intermediate times. In general, passive particles are progressively pushed from the coherent structures and tend to concentrate in highly hyperbolic regions in the proximity of the isolines of zero vorticity. For large dispersion times, the background turbulent field is a privileged domain of particle richness; there is however a permanent particle exchange between the background field and the energetic circulation cells which surround the coherent structures. At intermediate times, an anomalous dispersion regime may appear, depending upon the relative weight of the different topological domains active in two-dimensional turbulence. The use of appropriate conditional averages allows the basic topology of two-dimensional turbulence to be characterized from a Lagrangian point of view. In particular, an intermediate $t^{\frac{5}{4}}$ anomalous dispersion law is shown to be associated with the action of hyperbolic regions where deformation dominates rotation; the motion of the advected particles in strongly elliptic regions where rotation dominates over deformation is shown to be associated with a $<e1>t<sup>t^{\frac{5}{3}}$ dispersion law. Because neutral particles concentrate on average in hyperbolic regions, the $<e1>t^{\frac{5}{4}}$ dispersion law is quite robust and it can be observed under very general circumstances.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiano, A., Basdevant, C., Legras, B. & Sadourny, R. 1987a Vorticity and passive-scalar dynamics in two-dimensional turbulence. J. Fluid Mech. 183, 379397.Google Scholar
Babiano, A., Basdevant, C. Le Roy, P. & Sadourny, R. 1987b Single-particle dispersion, Lagrangian structures function and Lagrangian energy spectrum in two-dimensional incompressible turbulence. J. Mar. Res. 45, 107131.Google Scholar
Babiano, A., Basdevant, C., Le Roy, P. & Sadourny, R. 1990 Relative dispersion in two-dimensional turbulence. J. Fluid Mech. 214, 535557.Google Scholar
Babiano, A., Boffetta, G., Provenzale, A. & Vulpiani, A. 1993 Chaotic advection in point vortex models and 2-D turbulence. Phys. Fluids A (submitted.)Google Scholar
Babiano, A. & Zouari, N. 1993 Eulerian and Lagrangian dispersion capacities in two-dimensional turbulence. J. Fluid Mech. (submitted)Google Scholar
Bartello, P. & Holloway, G. 1991 Passive scalar transport in β-plane turbulence. J. Fluid Mech. 223, 521536.Google Scholar
Basdevant, C., Legras, B., Sadourny, R. & Béland, M. 1981 A study of barotropic model flows: Intermittency waves and predictability. J. Atmos. Sci. 38, 23052326.Google Scholar
Benzi, R., Paladin, G., Patarnello, S., Santangelo, P. & Vulpiani, A. 1986 Intermittency and coherent structures in two-dimensional turbulence. J. Phys. A: Math. Gen. 19, 37713784.Google Scholar
Benzi, R., Patarnello, S. & Santangelo, P. 1987 On the statistical properties of two-dimensional decaying turbulence. Europhys. Lett. 3, 811818.Google Scholar
Benzi, R., Patarnello, S. & Santangelo, P. 1988 Self-similar coherent structures in two-dimensional deaying turbulence. J. Phys. A: Math. Gen. 21, 12211237.Google Scholar
Brachet, M., Meneguzzi, M., Politano, H. & Sulem, P. 1988 The dynamics of freely decaying two-dimensional turbulence. J. Fluid Mech. 194, 333349.Google Scholar
Crisanti, A., Falcioni, M., Provenzale, A., Tanga, P. & Vulpiani, A. 1992 Dynamics of passively advected impurities in simple two-dimensional flow models. Phys. Fluids A 4, 18051820.Google Scholar
Haidvogel, D. B. 1982 On the feasibility of particle tracking in Eulerian ocean models. Ocean Model. 45, 49.Google Scholar
Legras, B., Santangelo, P. & Benzi, R. 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.Google Scholar
McWilliams, J. C. 1990 The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361385.Google Scholar
Ohkitani, K. 1991 Wave number space dynamics of enstrophy cascade in a forced two-dimensional turbulence. Phys. Fluids A 3, 15981611.Google Scholar
Osborne, A. R., Kirwan, A. D., Provenzale, A. & Bergamasco, L. 1989 Fractal drifter trajectories in the Kuroshio extension. Tellus 41A, 416435.Google Scholar
Provenzale, A., Osborne, A. R., Kirwan, A. D. & Bergamasco, L. 1991 The study of fluid parcel trajectories in large-scale ocean flows. In Nonlinear Topics in Ocean Physics (ed. A. R. Osborne), pp. 367401. Elsevier.
Sanderson, B. G. & Booth, D. A. 1991 The fractal dimension of drifter trajectories and estimates of horizontal eddy-diffusivity. Tellus 43A, 334349.Google Scholar
Sanderson, B. G., Goulding, A. & Okubo, A. 1990 The fractal dimension of relative Lagrangian motion. Tellus 42A, 550556.Google Scholar
Taylor, G. I. 1921 Diffusion by continuous movement. Proc. Lond. Math. Soc. 20, 196212.Google Scholar
Weiss, J. 1981 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. LJI-TN-121ss, La Jolla Inst., La Jolla. CA.
Zouari, N. & Babiano, A. 1990 Experiences numériques lagrangiennes à partir de modéles eulériens. Atmos. Ocean 28, 345364.Google Scholar
Zouari, N. 1991 Dispersion lagrangienne en turbulence bidimensionelle. D. thesis, Université de Paris 6.