Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:39:49.791Z Has data issue: false hasContentIssue false

Electrophoretic trajectories of non-uniformly charged particles in viscoelastic fluids: the weak surface charge limit

Published online by Cambridge University Press:  09 January 2023

Rajnandan Borthakur
Affiliation:
Discipline of Mechanical Engineering, Indian Institute of Technology Ganghinagar, Palaj, 382355 Gujarat, India
Uddipta Ghosh*
Affiliation:
Discipline of Mechanical Engineering, Indian Institute of Technology Ganghinagar, Palaj, 382355 Gujarat, India
*
Email address for correspondence: [email protected]

Abstract

Electrophoretic motion of a particle carrying a weak but arbitrary non-uniform surface charge density in an Oldroyd-B fluid is analysed here in the thin electrical double layer limit. A semi-analytical generic framework, based on regular perturbation, the Lamb's general solutions and the generalized reciprocal theorem, assuming the viscoelastic effects to remain subdominant, is developed for tracing the particle's trajectory using its instantaneous translational velocity and accounting for the temporal evolution of its surface charge driven by rotation. Our results reveal that in a viscoelastic medium, non-uniformly charged particles may generally follow distinct trajectories depending on their sizes, which is in stark contrast to Newtonian fluids. By considering the multipole moments of the surface charge, we show that the particle may initially rotate until its dipole moment becomes collinear with the imposed electric field, and the nature of the surrounding medium does not alter this fundamental behaviour. However, during the course of rotation, the excess polymeric stresses within the electrical double layer and the bulk may cause the particle to migrate perpendicular to the applied field, by forcing the multipole moments of the surface charge to interact with each other. The final steady-state trajectory of the particle and its possible migration normal to the applied electric field are also largely governed by these interactions and more specifically, presence of non-zero quadrupole moments. The present framework may be helpful towards designing tools for particle separation and sorting, relevant in many biological applications.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, A.M., Alves, M.A. & Pinho, F.T. 2009 Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech. 159 (1–3), 5063.CrossRefGoogle Scholar
Aggarwal, N. & Sarkar, K. 2008 Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow. J. Fluid Mech. 601, 6384.CrossRefGoogle Scholar
Ajdari, A. 1995 Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75 (4), 755.CrossRefGoogle ScholarPubMed
Ajdari, A. 1996 Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys. Rev. E 53 (5), 4996.CrossRefGoogle ScholarPubMed
Alshareedah, I. & Banerjee, P.R. 2022 A programmable landscape of viscoelastic protein-RNA condensates. Biophys. J. 121 (3), 355a.CrossRefGoogle Scholar
Anderson, J.L. 1985 Effect of nonuniform zeta potential on particle movement in electric fields. J. Colloid Interface Sci. 105 (1), 4554.CrossRefGoogle Scholar
Ardekani, A.M., Joseph, D.D., Dunn-Rankin, D. & Rangel, R.H. 2009 Particle–wall collision in a viscoelastic fluid. J. Fluid Mech. 633, 475483.CrossRefGoogle Scholar
Babnigg, G. & Giometti, C.S. 2004 Gelbank: a database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes. Nucleic Acids Res. 32 (suppl_1), D582D585.CrossRefGoogle ScholarPubMed
Bayati, P. & Najafi, A. 2019 Electrophoresis of active Janus particles. J. Chem. Phys. 150 (23), 234902.CrossRefGoogle ScholarPubMed
Baygents, J.C. & Saville, D.A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.CrossRefGoogle Scholar
Bender, C.M., Orszag, S. & Orszag, S.A. 1999 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, vol. 1. Springer Science & Business Media.CrossRefGoogle Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. John Wiley and Sons Inc.Google Scholar
Brust, M., Schaefer, C., Doerr, R., Pan, L., Garcia, M., Arratia, P.E. & Wagner, C. 2013 Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys. Rev. Lett. 110 (7), 078305.CrossRefGoogle ScholarPubMed
Chen, G.Y. & Keh, H.J. 2014 Start-up of electrophoresis of an arbitrarily oriented dielectric cylinder. Electrophoresis 35 (18), 25602565.CrossRefGoogle ScholarPubMed
Choudhary, A., Li, D., Renganathan, T., Xuan, X. & Pushpavanam, S. 2020 Electrokinetically enhanced cross-stream particle migration in viscoelastic flows. J. Fluid Mech. 898, A20.CrossRefGoogle Scholar
Das, S., Jalilvand, Z., Popescu, M.N., Uspal, W.E., Dietrich, S. & Kretzschmar, I. 2020 Floor- or ceiling-sliding for chemically active, gyrotactic, sedimenting Janus particles. Langmuir 36 (25), 71337147.CrossRefGoogle ScholarPubMed
D'Avino, G., Tuccillo, T., Maffettone, P.L., Greco, F. & Hulsen, M.A. 2010 Numerical simulations of particle migration in a viscoelastic fluid subjected to shear flow. Comput. Fluids 39 (4), 709721.CrossRefGoogle Scholar
Fair, M.C. & Anderson, J.L. 1989 Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid Interface Sci. 127 (2), 388400.CrossRefGoogle Scholar
Ghosal, S. 2006 Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech. 38, 309338.CrossRefGoogle Scholar
Ghosh, U., Mukherjee, S. & Chakraborty, S. 2021 Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit. J. Fluid Mech. 924, A41.CrossRefGoogle Scholar
Gomez-Solano, J.R., Blokhuis, A. & Bechinger, C. 2016 Dynamics of self-propelled Janus particles in viscoelastic fluids. Phys. Rev. Lett. 116 (13), 138301.CrossRefGoogle ScholarPubMed
Goswami, P., Dhar, J., Ghosh, U. & Chakraborty, S. 2017 Solvent-mediated nonelectrostatic ion–ion interactions predicting anomalies in electrophoresis. Electrophoresis 38 (5), 712719.CrossRefGoogle ScholarPubMed
Griffiths, D.J. 1962 Introduction to Electrodynamics. Prentice Hall.Google Scholar
Groisman, A., Enzelberger, M. & Quake, S.R. 2003 Microfluidic memory and control devices. Science 300 (5621), 955958.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.Google Scholar
Ho, B.P. & Leal, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.CrossRefGoogle Scholar
Ho, B.P. & Leal, L.G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76 (4), 783799.CrossRefGoogle Scholar
Hsu, J.-P., Huang, H.-T., Yeh, L.-H. & Tseng, S. 2012 Electrophoresis of a particle at an arbitrary surface potential and double layer thickness: importance of nonuniformly charged conditions. Langmuir 28 (5), 29973004.CrossRefGoogle ScholarPubMed
Hsu, J.-P. & Yeh, L.-H. 2007 Effect of a charged boundary on electrophoresis in a Carreau fluid: a sphere at an arbitrary position in a spherical cavity. Langmuir 23 (16), 86378646.CrossRefGoogle Scholar
Hsu, J.-P., Yeh, L.-H. & Ku, M.-H. 2006 Electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid. Colloid Polym. Sci. 284 (8), 886892.CrossRefGoogle Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
Kaigala, G.V., Hoang, V.N., Stickel, A., Lauzon, J., Manage, D., Pilarski, L.M. & Backhouse, C.J. 2008 An inexpensive and portable microchip-based platform for integrated RT–PCR and capillary electrophoresis. Analyst 133 (3), 331338.CrossRefGoogle ScholarPubMed
Karger, B.L., Cohen, A.S. & Guttman, A. 1989 High-performance capillary electrophoresis in the biological sciences. J. Chromatogr. 492, 585614.CrossRefGoogle ScholarPubMed
Khair, A.S., Posluszny, D.E. & Walker, L.M. 2012 Coupling electrokinetics and rheology: electrophoresis in non-Newtonian fluids. Phys. Rev. E 85 (1), 016320.CrossRefGoogle ScholarPubMed
Khair, A.S. & Squires, T.M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21 (4), 042001.CrossRefGoogle Scholar
Kim, B., Lee, S.S., Yoo, T.H. & Kim, J.M. 2021 Viscoelastic particle focusing in human biofluids. Electrophoresis 42 (21–22), 22382245.CrossRefGoogle ScholarPubMed
Kremser, L., Blaas, D. & Kenndler, E. 2004 Capillary electrophoresis of biological particles: viruses, bacteria, and eukaryotic cells. Electrophoresis 25 (14), 22822291.CrossRefGoogle ScholarPubMed
Kroo, L.A., Binagia, J.P., Eckman, N., Prakash, M. & Shaqfeh, E.S.G. 2022 A freely suspended robotic swimmer propelled by viscoelastic normal stresses. J. Fluid Mech. 944, A20.CrossRefGoogle Scholar
Kumar, V., Mukherjee, J., Sinha, S.K. & Ghosh, U. 2022 Combined electromechanically driven pulsating flow of nonlinear viscoelastic fluids in narrow confinements. J. R. Soc. Interface 19 (189), 20210876.CrossRefGoogle ScholarPubMed
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2015 Fluid Mechanics. Academic.Google Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Lee, E., Chen, C.-T. & Hsu, J.-P. 2005 Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface. J. Colloid Interface Sci. 285 (2), 857864.CrossRefGoogle Scholar
Lee, L.J., Madou, M.J., Koelling, K.W., Daunert, S., Lai, S., Koh, C.G., Juang, Y.-J., Lu, Y. & Yu, L. 2001 Design and fabrication of CD-like microfluidic platforms for diagnostics: polymer-based microfabrication. Biomed. Microdevices 3 (4), 339351.CrossRefGoogle Scholar
Li, D. & Xuan, X. 2018 Electrophoretic slip-tuned particle migration in microchannel viscoelastic fluid flows. Phys. Rev. Fluids 3 (7), 074202.CrossRefGoogle Scholar
Li, G. & Koch, D.L. 2020 Electrophoresis in dilute polymer solutions. J. Fluid Mech. 884, A9.CrossRefGoogle Scholar
Li, G., McKinley, G.H. & Ardekani, A.M. 2015 Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785, 486505.CrossRefGoogle Scholar
Lu, X., DuBose, J., Joo, S.W., Qian, S. & Xuan, X. 2015 Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel. Biomicrofluidics 9 (1), 014108.CrossRefGoogle Scholar
Lu, X., Patel, S., Zhang, M., Woo Joo, S., Qian, S., Ogale, A. & Xuan, X. 2014 An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction. Biomicrofluidics 8 (2), 021802.CrossRefGoogle ScholarPubMed
Mahapatra, B. & Bandopadhyay, A. 2021 Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Phys. Fluids 33 (1), 012001.CrossRefGoogle Scholar
Malekanfard, A., Ko, C.-H., Li, D., Bulloch, L., Baldwin, A., Wang, Y.-N., Fu, L.-M. & Xuan, X. 2019 Experimental study of particle electrophoresis in shear-thinning fluids. Phys. Fluids 31 (2), 022002.CrossRefGoogle Scholar
Masoud, H. & Stone, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879, P1.CrossRefGoogle Scholar
Molotilin, T.Y., Lobaskin, V. & Vinogradova, O.I. 2016 Electrophoresis of Janus particles: a molecular dynamics simulation study. J. Chem. Phys. 145 (24), 244704.CrossRefGoogle ScholarPubMed
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2018 Self-propelled colloidal particle near a planar wall: a Brownian dynamics study. Phys. Rev. Fluids 3 (1), 014104.CrossRefGoogle Scholar
Mukherjee, S. & Sarkar, K. 2011 Viscoelastic drop falling through a viscous medium. Phys. Fluids 23 (1), 013101.CrossRefGoogle Scholar
Nasouri, B. & Golestanian, R. 2020 Exact axisymmetric interaction of phoretically active Janus particles. J. Fluid Mech. 905, A13.CrossRefGoogle Scholar
Natu, A. & Ghosh, U. 2021 Electrokinetics of polymeric fluids in narrow rectangular confinements. Soft Matt. 17 (38), 87128729.CrossRefGoogle ScholarPubMed
Neoh, H.-M., Tan, X.-E., Sapri, H.F. & Tan, T.L. 2019 Pulsed-field gel electrophoresis (PFGE): a review of the ‘gold standard’ or bacteria typing and current alternatives. Infect. Genet. Evol. 74, 103935.CrossRefGoogle ScholarPubMed
Nosenko, V., Luoni, F., Kaouk, A., Rubin-Zuzic, M. & Thomas, H. 2020 Active Janus particles in a complex plasma. Phys. Rev. Res. 2 (3), 033226.CrossRefGoogle Scholar
Ohshima, H. 1996 Henry's function for electrophoresis of a cylindrical colloidal particle. J. Colloid Interface Sci. 180 (1), 299301.CrossRefGoogle Scholar
Ohshima, H. 2006 Theory of Colloid and Interfacial Phenomena. Elsevier.Google Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88 (1), 128.CrossRefGoogle Scholar
Phan-Thien, N. 1983 Coaxial-disk flow of an Oldroyd-B fluid: exact solution and stability. J. Non-Newtonian Fluid Mech. 13 (3), 325340.CrossRefGoogle Scholar
Posluszny, D. 2014 Electrophoresis of colloidal particles in shear-thinning polymer solutions. PhD Thesis, Carnegie Mellon University.Google Scholar
Pozrikidis, C. & Jankowski, D. 1997 Introduction to Theoretical and Computational Fluid Dynamics, vol. 675. Oxford University Press.Google Scholar
Ramautar, R., Demirci, A. & de Jong, G.J. 2006 Capillary electrophoresis in metabolomics. TrAC Trend. Anal. Chem. 25 (5), 455466.CrossRefGoogle Scholar
Saville, D.A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9 (1), 321337.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2014 Electrophoresis of bubbles. J. Fluid Mech. 753, 4979.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2012 Strong-field electrophoresis. J. Fluid Mech. 701, 333351.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2014 Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys. Fluids 26 (12), 122002.CrossRefGoogle Scholar
Schnitzer, O., Zeyde, R., Yavneh, I. & Yariv, E. 2013 Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 25 (5), 052004.CrossRefGoogle Scholar
Skalak, R., Ozkaya, N. & Skalak, T.C. 1989 Biofluid mechanics. Annu. Rev. Fluid Mech. 21 (1), 167200.CrossRefGoogle Scholar
Tan, W. & Masuoka, T. 2005 Stokes’ first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids 17 (2), 023101.CrossRefGoogle Scholar
Tang, S., Liu, S., Guo, Y., Liu, X. & Jiang, S. 2014 Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. J. Chromatogr. A 1357, 147157.CrossRefGoogle ScholarPubMed
Turkoz, E., Lopez-Herrera, J.M., Eggers, J., Arnold, C.B. & Deike, L. 2018 Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model. J. Fluid Mech. 851, R2.CrossRefGoogle Scholar
Velegol, D. 2002 Electrophoresis of randomly charged particles. Electrophoresis 23 (13), 20232028.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Walther, A. & Müller, A.H.E. 2008 Janus particles. Soft Matt. 4 (4), 663668.CrossRefGoogle ScholarPubMed
Westermeier, R. 2016 Electrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations. John Wiley & Sons.CrossRefGoogle Scholar
Yang, S., Guo, F., Kiraly, B., Mao, X., Lu, M., Leong, K.W. & Huang, T.J. 2012 Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on a Chip 12 (12), 20972102.CrossRefGoogle ScholarPubMed
Yariv, E. 2006 ‘Force-free’ electrophoresis? Phys. Fluids 18 (3), 031702.CrossRefGoogle Scholar
Ye, C., Sinton, D., Erickson, D. & Li, D. 2002 Electrophoretic motion of a circular cylindrical particle in a circular cylindrical microchannel. Langmuir 18 (23), 90959101.CrossRefGoogle Scholar
Yoon, B.J. 1991 Electrophoretic motion of spherical particles with a nonuniform charge distribution. J. Colloid Interface Sci. 142 (2), 575581.CrossRefGoogle Scholar
Yuan, D., Zhao, Q., Yan, S., Tang, S.-Y., Alici, G., Zhang, J. & Li, W. 2018 Recent progress of particle migration in viscoelastic fluids. Lab on a Chip 18 (4), 551567.CrossRefGoogle ScholarPubMed
Zhang, J., Grzybowski, B.A. & Granick, S. 2017 Janus particle synthesis, assembly, and application. Langmuir 33 (28), 69646977.CrossRefGoogle ScholarPubMed
Zhao, C. & Yang, C. 2011 An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J. Non-Newtonian Fluid Mech. 166 (17–18), 10761079.CrossRefGoogle Scholar
Zhao, C. & Yang, C. 2013 Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94108.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Borthakur and Ghosh supplementary material

Borthakur and Ghosh supplementary material

Download Borthakur and Ghosh supplementary material(PDF)
PDF 1.1 MB