Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T06:18:33.454Z Has data issue: false hasContentIssue false

Electrophoresis of bubbles

Published online by Cambridge University Press:  16 July 2014

Ory Schnitzer
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
Itzchak Frankel
Affiliation:
Department of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Ehud Yariv*
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
*
Email address for correspondence: [email protected]

Abstract

Smoluchowski’s celebrated electrophoresis formula is inapplicable to field-driven motion of drops and bubbles with mobile interfaces. We here analyse bubble electrophoresis in the thin-double-layer limit. To this end, we employ a systematic asymptotic procedure starting from the standard electrokinetic equations and a simple physicochemical interface model. This furnishes a coarse-grained macroscale description where the Debye-layer physics is embodied in effective boundary conditions. These conditions, in turn, represent a non-conventional driving mechanism for electrokinetic flows, where bulk concentration polarization, engendered by the interaction of the electric field and the Debye layer, results in a Marangoni-like shear stress. Remarkably, the electro-osmotic velocity jump at the macroscale level does not affect the electrophoretic velocity. Regular approximations are obtained in the respective cases of small zeta potentials, small ions, and weak applied fields. The nonlinear small-zeta-potential approximation rationalizes the paradoxical zero mobility predicted by the linearized scheme of Booth (J. Chem. Phys., vol. 19, 1951, pp. 1331–1336). For large (millimetre-size) bubbles the pertinent limit is actually that of strong fields. We have carried out a matched-asymptotic-expansion analysis of this singular limit, where salt polarization is confined to a narrow diffusive layer. This analysis establishes that the bubble velocity scales as the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2/3$-power of the applied-field magnitude and yields its explicit functional dependence upon a specific combination of the zeta potential and the ionic drag coefficient. The latter is provided to within an $O(1)$ numerical pre-factor which, in turn, is calculated via the solution of a universal (parameter-free) nonlinear flow problem. It is demonstrated that, with increasing field magnitude, all numerical solutions of the macroscale model indeed collapse on the analytic approximation thus obtained. Existing measurements of clean-bubble electrophoresis agree neither with present theory nor with previous models; we discuss this ongoing discrepancy.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Baygents, J. C. & Saville, D. A. 1989 The circulation produced in a drop by an electric field: a high field strength electrokinetic model. In Drops & Bubbles, Third International Colloquium, Monterey 1988 (ed. Wang, T.), AIP Conference Proceedings, vol. 7, pp. 717. Am. Inst. Phys..Google Scholar
Baygents, J. C. & Saville, D. A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.Google Scholar
Booth, F. 1951 The cataphoresis of spherical fluid droplets in electrolytes. J. Chem. Phys. 19, 13311336.CrossRefGoogle Scholar
Brandon, N. P., Kelsall, G. H., Levine, S. & Smith, A. L. 1985 Interfacial electrical properties of electrogenerated bubbles. J. Appl. Electrochem. 15 (4), 485493.Google Scholar
Chang, H.-C. & Yeo, L. Y. 2010 Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University Press.Google Scholar
Choi, K., Kim, S. J., Jin, Y. G., Jang, Y. O., Kim, J.-S. & Chung, D. S. 2008 Single drop microextraction using commercial capillary electrophoresis instruments. Anal. Chem. 81 (1), 225230.Google Scholar
Davis, J. A., James, R. O. & Leckie, J. O. 1978 Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63 (3), 480499.Google Scholar
Graciaa, A., Morel, G., Saulner, P., Lachaise, J. & Schechter, R. S. 1995 The $\zeta $ -potential of gas bubbles. J. Colloid Interface Sci. 172 (1), 131136.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Harper, J. F. 2010 Electrophoresis of surfactant-free bubbles. J. Colloid Interface Sci. 350 (1), 361367.CrossRefGoogle ScholarPubMed
Hinch, E. J., Sherwood, J. D., Chew, W. C. & Sen, P. N. 1984 Dielectric response of a dilute suspension of spheres with thin double layers in an asymmetric electrolyte. J. Chem. Soc. Faraday Trans. 2 80 (5), 535551.Google Scholar
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & Demello, A. J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8 (8), 12441254.CrossRefGoogle ScholarPubMed
Hunter, R. J. 2000 Foundations of Colloidal Science. Oxford University Press.Google Scholar
Kelsall, G. H., Tang, S., Smith, A. L. & Yurdakul, S. 1996a Measurement of rise and electrophoretic velocities of gas bubbles. J. Chem. Soc. Faraday Trans. 92, 38793885.Google Scholar
Kelsall, G. H., Tang, S., Yurdakul, S. & Smith, A. L. 1996b Electrophoretic behaviour of bubbles in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 92, 38873893.CrossRefGoogle Scholar
Khair, A. S. 2013 Diffusiophoresis of colloidal particles in neutral solute gradients at finite Péclet number. J. Fluid Mech. 731, 6494.Google Scholar
Kumar, A., Elele, E., Yeksel, M., Khusid, B., Qiu, Z. & Acrivos, A. 2006 Measurements of the fluid and particle mobilities in strong electric fields. Phys. Fluids 18, 123301.Google Scholar
Leroy, P., Jougnot, D., Revil, A., Lassin, A. & Azaroual, M. 2012 A double layer model of the gas bubble/water interface. J. Colloid Interface Sci. 388, 243256.Google Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Liu, H. & Dasgupta, P. K. 1997 A falling drop for sample injection in capillary zone electrophoresis. Analyt. Chem. 69 (6), 12111216.CrossRefGoogle Scholar
Lyklema, J. 1995 Fundamentals of Interface and Colloid Science, vol. II. Academic Press.Google Scholar
McTaggart, H. A. 1914 The electrification at liquid–gas surfaces. Phil. Mag. 27 (158), 297314.Google Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.Google Scholar
Morrison, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34, 210214.Google Scholar
O’Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92 (1), 204216.CrossRefGoogle Scholar
O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 74, 16071626.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W. & White, L. R. 1984 Electrokinetic phenomena in a dilute suspension of charged mercury drops. J. Chem. Soc. Faraday Trans. 2 80 (12), 16431667.Google Scholar
Quincke, G. 1861 Ueber die fortfiihrüng Materieller theilchen durch strömende Elektricität. Ann. Phys. Chem. 115, 513598.Google Scholar
Rivette, N. J. & Baygents, J. C. 1996 A note on the electrostatic force and torque acting on an isolated body in an electric field. Chem. Engng Sci. 51 (23), 52055211.Google Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.Google Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.Google Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.Google Scholar
Schnitzer, O. & Yariv, E. 2012a Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys. Rev. E 86, 021503.Google Scholar
Schnitzer, O. & Yariv, E. 2012b Strong-field electrophoresis. J. Fluid Mech. 701, 333351.Google Scholar
Teh, S. Y., Lin, R., Hung, L. H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.Google Scholar
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.Google Scholar
Yang, C., Dabros, T., Li, D., Czarnecki, J. & Masliyah, J. H. 2001 Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. J. Colloid Interface Sci. 243 (1), 128135.CrossRefGoogle Scholar
Yariv, E. 2006 ‘Force-free’ electrophoresis? Phys. Fluids 18, 031702.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.Google Scholar