Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:50:32.836Z Has data issue: false hasContentIssue false

Electromigration dispersion in a capillary in the presence of electro-osmotic flow

Published online by Cambridge University Press:  09 March 2012

S. Ghosal*
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
Z. Chen
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: [email protected]

Abstract

The differential migration of ions in an applied electric field is the basis for the separation of chemical species by capillary electrophoresis. Axial diffusion of the concentration peak limits the separation efficiency. Electromigration dispersion is observed when the concentration of sample ions is comparable to that of the background ions. Under such conditions, the local electrical conductivity is significantly altered in the sample zone making the electric field, and, therefore, the ion migration velocity, concentration dependent. The resulting nonlinear wave exhibits shock-like features and, under certain simplifying assumptions, is described by Burgers’ equation (Ghosal & Chen Bull. Math. Biol., vol. 72, 2010, p. 2047). In this paper, we consider the more general situation where the walls of the separation channel may have a non-zero zeta potential and are therefore able to sustain an electro-osmotic bulk flow. The main result is a one-dimensional nonlinear advection diffusion equation for the area averaged concentration. This homogenized equation accounts for the Taylor–Aris dispersion resulting from the variation in the electro-osmotic slip velocity along the wall. It is shown that in a certain range of parameters, the electro-osmotic flow can actually reduce the total dispersion by delaying the formation of a concentration shock. However, if the electro-osmotic flow is sufficiently high, the total dispersion is increased because of the Taylor–Aris contribution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235, 6777.Google Scholar
2. Babskii, V. G., Zhukov, M. Yu. & Yudovich, V. I. 1989 Mathematical Theory of Electrophoresis. Consultants Bureau, Plenum.Google Scholar
3. Boušková, E., Presutti, C., Gebauer, P., Fanali, S., Beckers, J. L. & Boček, P. 2004 Experimental assessment of electromigration properties of background electrolytes in capillary zone electrophoresis. Electrophoresis 25, 355359.CrossRefGoogle ScholarPubMed
4. Brenner, H. & Edwards, D. A. 1993 Macrotransport Processes. Butterworth.Google Scholar
5. Camilleri, P.  (Ed.) 1998 Capillary Electrophoresis, Theory and Practice. CRC.Google Scholar
6. Chen, Z. & Ghosal, S. 2012 Electromigration dispersion in capillary electrophoresis. Bull. Math. Biol. 74 (2), 346355.CrossRefGoogle ScholarPubMed
7. Chen, C.-H., Lin, H., Lele, S. K. & Santiago, J. G. 2005 Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech. 524, 263303.CrossRefGoogle Scholar
8. Datta, S. & Ghosal, S. 2008 Dispersion due to wall interactions in microfluidic separation systems. Phys. Fluids 20, 012103.CrossRefGoogle Scholar
9. Datta, S. & Ghosal, S. 2009 Characterizing dispersion in microfluidic channels. Lab on a Chip 9, 25372550.CrossRefGoogle ScholarPubMed
10. Gaš, B. 2009 Theory of electrophoresis: Fate of one equation. Electrophoresis 30, S7S15.CrossRefGoogle ScholarPubMed
11. Ghosal, S. 2002a Band broadening in a microcapillary with a stepwise change in the -potential. Analyt. Chem. 74 (16), 41984203.Google Scholar
12. Ghosal, S. 2002b Effect of analyte adsorption on the electroosmotic flow in microfluidic channels. Analyt. Chem. 74, 771775.CrossRefGoogle ScholarPubMed
13. Ghosal, S. 2002c Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103128.Google Scholar
14. Ghosal, S. 2006 Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech. 38, 309338.CrossRefGoogle Scholar
15. Ghosal, S. & Chen, Z. 2010 Nonlinear waves in capillary electrophoresis. Bull. Math. Biol. 72, 20472066.CrossRefGoogle ScholarPubMed
16. Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., Kenny, T. W. & Garguilo, M. G. 2000 Electroosmotic capillary flow with nonuniform zeta potential. Analyt. Chem. 72, 10531057.CrossRefGoogle ScholarPubMed
17. Kohlrausch, F. 1897 Ueber concentrations-verschiebungen durch electrolyse im inneren von lösungen und lösungsgemischen. Ann. Phys. 62, 209239.CrossRefGoogle Scholar
18. Landers, J. P.  (Ed.) 1996 Introduction to Capillary Electrophoresis. CRC.Google Scholar
19. Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.CrossRefGoogle Scholar
20. Mikkers, F. E. P. 1999 Concentration distributions in capillary electrophoresis: Cze in a spreadsheet. Analyt. Chem. 71, 522533.CrossRefGoogle Scholar
21. Mikkers, F. E. P., Everaerts, F. M. & Verheggen, Th. P. E. M. 1979 Concentration distributions in free zone electrophoresis. J. Chromatogr. 169, 110.CrossRefGoogle Scholar
22. Oddy, M. H. & Santiago, J. G. 2005 Multiple-species model for electrokinetic instability. Phys. Fluids 17 (6), 064108.CrossRefGoogle Scholar
23. Planck, M. 1890 Ueber die erregung von electricität und wärme in electrolyten. Ann. Phys. Chem. 39, 161186.Google Scholar
24. Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.CrossRefGoogle Scholar
25. Probstein, R. 1994 Physicochemical Hydrodynamics. John Wiley.Google Scholar
26. Rica, R. A. & Bazant, M. Z. 2010 Electrodiffusiophoresis: particle motion in electrolytes under direct current. Phys. Fluids 22 (11), 112109.CrossRefGoogle Scholar
27. Shampine, L. F. & Reichelt, M. W. 1997 The matlab ode suite. SIAM J. Sci. Comput. 18, 122.CrossRefGoogle Scholar
28. Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A 219, 186203.Google Scholar
29. Thormann, W., Caslavska, J., Breadmore, M. C. & Mosher, R. A. 2009 Dynamic computer simulations of electrophoresis: Three decades of active research. Electrophoresis 30, S16S26.Google Scholar
30. Zangle, T. A., Mani, A. & Santiago, J. G. 2009 On the propagation of concentration polarization from microchannel–nanochannel interfaces part II: numerical and experimental study. Langmuir 25 (6), 39093916.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ghosal and Chen supplementary material

Appendix

Download Ghosal and Chen supplementary material(PDF)
PDF 516.5 KB