Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:45:03.106Z Has data issue: false hasContentIssue false

Effects of the particle deformability on the critical separation diameter in the deterministic lateral displacement device

Published online by Cambridge University Press:  03 March 2014

Shangjun Ye
Affiliation:
State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
Xueming Shao
Affiliation:
State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
Zhaosheng Yu*
Affiliation:
State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
Wenguang Yu
Affiliation:
State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
*
Email address for correspondence: [email protected]

Abstract

Deterministic lateral displacement (DLD) technology is a newly developed method which can separate microscale and nanoscale particles continuously and efficiently. In this paper, a direct numerical simulation method (i.e. a fictitious domain method) is used to simulate the motion of an elastic particle (modelled as homogeneously elastic body) in the DLD device. The effects of the particle deformability on the critical separation diameter are investigated. Our results indicate that there exists a critical deformability, below which the critical diameter decreases with increasing deformability, whereas beyond which the critical diameter increases with increasing deformability. The reasons are discussed via the consideration of the effects of the particle deformation and the lubrication force on the lateral position of the particle centre point. In addition, our results show that the increase in the gap distance between adjacent posts in both directions or in the longitudinal direction alone leads to the increase in the critical particle size with respect to the gap size, which can be explained by the lateral position of the separation streamline of the undisturbed flow.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Fandi, M., Al-Rousan, M., Jaradat, M. A. K. & Al-Ebbini, L. 2011 New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot. Comput. Integr. Manuf. 27 (2), 237244.CrossRefGoogle Scholar
Balvin, M., Sohn, E., Iracki, T., Drazer, G. & Frechette, J. 2009 Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys. Rev. Lett. 103 (7), 078301.CrossRefGoogle ScholarPubMed
Beech, J. P., Holm, S. H., Adolfsson, K. & Tegenfeldt, J. O. 2012 Sorting cells by size, shape and deformability. Lab on a Chip 12 (6), 10481051.CrossRefGoogle ScholarPubMed
Beech, J. P. & Tegenfeldt, J. O. 2008 Tuneable separation in elastomeric microfluidics devices. Lab on a Chip 8 (5), 657659.CrossRefGoogle ScholarPubMed
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.Google Scholar
D’Avino, G. 2013 Non-Newtonian deterministic lateral displacement separator: theory and simulations. Rheol. Acta 52 (3), 221236.CrossRefGoogle Scholar
Davis, J. A., Inglis, D. W., Morton, K. J., Lawrence, D. A., Huang, L. R., Chou, S. Y., Sturm, J. C. & Austin, R. H. 2006 Deterministic hydrodynamics: taking blood apart. Proc. Natl Acad. Sci. USA 103 (40), 1477914784.CrossRefGoogle ScholarPubMed
Frechette, J. & Drazer, G. 2009 Directional locking and deterministic separation in periodic arrays. J. Fluid Mech. 627, 379401.CrossRefGoogle Scholar
Glowinski, R., Pan, T. W., Hesla, T. I. & Joseph, D. D. 1999 A distributed lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25 (5), 755794.CrossRefGoogle Scholar
Green, J. V., Radisic, M. & Murthy, S. K. 2009 Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Analyt. Chem. 81 (21), 91789182.CrossRefGoogle ScholarPubMed
Holm, S. H., Beech, J. P., Barrett, M. P. & Tegenfeldt, J. O. 2011 Separation of parasites from human blood using deterministic lateral displacement. Lab on a Chip 11 (7), 13261332.CrossRefGoogle ScholarPubMed
Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. 2004 Continuous particle separation through deterministic lateral displacement. Science 304 (5673), 987990.CrossRefGoogle ScholarPubMed
Huang, R., Barber, T. A., Schmidt, M. A., Tompkins, R. G., Toner, M., Bianchi, D. W., Kapur, R. & Flejter, W. L. 2008 A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenatal Diagnosis 28 (10), 892899.CrossRefGoogle ScholarPubMed
Inglis, D. W., Davis, J. A., Austin, R. H. & Sturm, J. C. 2006 Critical particle size for fractionation by deterministic lateral displacement. Lab on a Chip 6 (5), 655658.CrossRefGoogle ScholarPubMed
Inglis, D. W., Morton, K. J., Davis, J. A., Zieziulewicz, T. J., Lawrence, D. A., Austin, R. H. & Sturm, J. C. 2008 Microfluidic device for label-free measurement of platelet activation. Lab on a Chip 8 (6), 925931.CrossRefGoogle ScholarPubMed
Koplik, J. & Drazer, G. 2010 Nanoscale simulations of directional locking. Phys. Fluids 22 (5), 052005.CrossRefGoogle Scholar
Kulrattanarak, T., van der Sman , R. G. M., Schroen, C. G. P. H. & Boom, R. M. 2008 Classification and evaluation of microfluidic devices for continuous suspension fractionation. Adv. Colloid Interface Sci. 142 (1–2), 5366.Google ScholarPubMed
Kulrattanarak, T., van der Sman, R. G. M., Schroen, C. G. P. H. & Boom, R. M. 2011 Analysis of mixed motion in deterministic ratchets via experiment and particle simulation. Microfluid Nanofluid 10 (4), 843853.CrossRefGoogle Scholar
Long, B. R., Heller, M., Beech, J. P., Linke, H., Bruus, H. & Tegenfeldt, J. O. 2008 Multidirectional sorting modes in deterministic lateral displacement devices. Phys. Rev. E 78 (4), 046304.CrossRefGoogle ScholarPubMed
Loutherback, K., Chou, K. S., Newman, J., Puchalla, J., Austin, R. H. & Sturm, J. C. 2010 Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9 (6), 11431149.CrossRefGoogle Scholar
Loutherback, K., D’Silva, J., Liu, L., Wu, A., Austin, R. H. & Sturm, J. C. 2012 Deterministic separation of cancer cells from blood at 10 ml/min. AIP Advances 2 (4), 042107.CrossRefGoogle ScholarPubMed
Loutherback, K., Puchalla, J., Austin, R. H. & Sturm, J. C. 2009 Deterministic microfluidic ratchet. Phys. Rev. Lett. 102 (4), 045301.CrossRefGoogle ScholarPubMed
Martin, H. & Henrik, B. 2008 A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J. Micromech. Microengng 18 (7), 075030.Google Scholar
Pamme, N. 2007 Continuous flow separations in microfluidic devices. Lab on a Chip 7 (12), 16441659.CrossRefGoogle ScholarPubMed
Quek, R., Duc Vinh, L. & Chiam, K. H. 2011 Separation of deformable particles in deterministic lateral displacement devices. Phys. Rev. E 83 (5), 056301.CrossRefGoogle ScholarPubMed
Yu, Z. 2005 A DLM/FD method for fluid/flexible-body interactions. J. Comput. Phys. 207, 127.CrossRefGoogle Scholar
Yu, Z. & Shao, X. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227 (1), 292314.CrossRefGoogle Scholar
Yu, Z. & Shao, X. 2010 A three-dimensional fictitious domain method for the simulation of fluid–structure interactions. J. Hydrodyn. Ser. B 22, 5, suppl 1, 178183.CrossRefGoogle Scholar
Zhang, B., Green, J. V., Murthy, S. K. & Radisic, M. 2012 Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement. PLoS One 7 (5), 0037619.Google ScholarPubMed