Published online by Cambridge University Press: 20 April 2006
An approximate, conveniently applied theory with corresponding experimental data is presented concerning the changes in momentum and mass transfer produced by a ridge of small slopes in a flat-surface quasi-stationary turbulent boundary layer. A first-order mean velocity perturbation solution is found to be in good agreement with measured velocities on the up-slope side of a two-dimensional ridge, of length 20 cm and height 1 cm, fixed on the floor of the working section of an open-circuit wind tunnel. A vapour-transfer eddy-diffusivity distribution is then calculated for the inner boundary-layer region and solutions of the consequent vapour-transfer equation give the variation of rate of evaporation from surfaces of varying lengths placed at different positions on the up-slope region of the ridge. Corresponding measurements are found to be in good agreement with the theoretical calculations, and show that, even over small slopes (of 1 in 10), the evaporation rate varied with position by 25% from maximum to minimum. This method of calculation is extended to examine the effect of surface curvature on diffusion of gas from an upstream line source in a turbulent boundary layer over the ridge; experimental and theoretical concentration profiles compare extremely well over the leading slope.