Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:48:08.952Z Has data issue: false hasContentIssue false

Effects of surface roughness on a separating turbulent boundary layer

Published online by Cambridge University Press:  26 February 2018

Wen Wu*
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
Ugo Piomelli
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
*
Email address for correspondence: [email protected]

Abstract

Separating turbulent boundary layers over smooth and rough flat plates are studied by large-eddy simulations. A suction–blowing velocity distribution imposed at the top boundary of the computation domain produces an adverse-to-favourable pressure gradient and creates a closed separation bubble. The Reynolds number based on the momentum thickness and the free-stream velocity before the pressure gradient begins is 2500. Virtual sand grain roughness in the fully rough regime is modelled by an immersed boundary method. Compared with a smooth-wall case, streamline detachment occurs earlier and the separation region is substantially larger for the rough-wall case, due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag, so that the point where the wall stress vanishes does not coincide with the detachment of the flow from the surface. A thin reversed-flow region is formed below the roughness crest; the presence of recirculation regions behind each roughness element also affects the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average velocity can still be positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE) in the rough-wall case, the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. A., Mizobuchi, Y., Matsuo, Y. & Spalart, P. R. 2012 DNS and modeling of a turbulent boundary layer with separation and reattachment over a range of Reynolds numbers. In CTR Annual Research Briefs, pp. 311322. Center for Turbulence Research.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Alfredsson, P. H., Segalini, A. & Örlü, R. 2011 A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the outer-peak. Phys. Fluids 23, 14.Google Scholar
Alving, A. E. & Fernholz, H. H. 1995 Turbulence measurements around a mild separation bubble and down-stream of reattachment. J. Fluid Mech. 322, 279328.Google Scholar
Aubertine, C. D., Eaton, J. K. & Song, S. 2004 Parameters controlling roughness effects in a separating boundary layer. Intl J. Heat Fluid Flow 25 (3), 444450.Google Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.Google Scholar
Castillo, L., Wang, X. & George, W. K. 2004 Separation criterion for turbulent boundary layers via similarity analysis. Trans. ASME J. Fluids Engng 126, 297304.Google Scholar
Chen, H. C., Patel, V. C. & Ju, S. 1990 Solutions of Reynolds-averaged Navier–Stokes equations for three-dimensional incompressible flows. J. Comput. Phys. 88 (2), 305336.Google Scholar
Cheng, W., Pullin, D. I. & Samtaney, R. 2015 Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. J. Fluid Mech. 785, 78108.Google Scholar
Clauser, F. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aero. Sci. 21, 91108.Google Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Engrs 11 (4), 133156.Google Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.Google Scholar
Dengel, P. & Fernholz, H. H. 1990 An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 212, 615636.Google Scholar
Drozdz, A. & Elsner, W. 2011 Detection of coherent structures in a turbulent boundary layer with zero, favourable and adverse pressure gradients. J. Phys.: Conf. Ser. 318 (6), 062007.Google Scholar
Dutta, R., Nicolle, J., Giroux, A.-M. & Piomelli, U. 2016 Evaluation of turbulence models on roughened turbine blades. In 28th IAHR Symposium on Hydraulic Machinery and Systems (IAHR2016), IOP Conference Series: Earth and Environmental Science (EES) (ed. Fortes Patella, R.), vol. 49, p. 062007–1–10. Institute of Physics, IOP Publishing.Google Scholar
Dutta, R., Nicolle, J., Giroux, A.-M. & Piomelli, U. 2017 Evaluation of turbulence models on roughened turbine blades. Intl J. Fluid Mach. Syst. 10 (3), 227239.Google Scholar
Elsberry, K., Loeffler, J., Zhou, M. D. & Wygnanski, I. 2000 An experimental study of a boundary layer that is maintained on the verge of separation. J. Fluid Mech. 423, 227261.Google Scholar
Finnigan, J. J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.CrossRefGoogle Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 19.CrossRefGoogle Scholar
Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L. & Leschziner, M. A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.Google Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Hong, J., Katz, J. & Schultz, M. P. 2011 Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 137.Google Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173196.Google Scholar
Jones, M. B., Marusic, I. & Perry, A. E. 2001 Evolution and structure of sink flow turbulent boundary layers. J. Fluid Mech. 428, 127.Google Scholar
Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T. S. & Moin, P. 1999 Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151185.Google Scholar
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5, 20–1–27.CrossRefGoogle Scholar
Kitsios, V., Atkinson, C., Sillero, J. A., Borrell, G., Gungor, A. G., Jiménez, J. & Soria, J. 2016 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer. Intl J. Heat Fluid Flow 61 (Part A), 129136.Google Scholar
Kline, S. J., Coles, D. E. & Hirst, E. A. 1968 Computation of turbulent boundary layers. In Proceedings of the AFPSR–IFP Stanford Conference. Stanford University.Google Scholar
Krogstad, P.-A. & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluid 27, 450460.Google Scholar
Krogstad, P.-A., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough-and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.Google Scholar
Krogstad, P.-Å. & Skare, P. E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluid 7, 20142024.CrossRefGoogle Scholar
Kunkel, G. J., Allen, J. J. & Smits, A. J. 2007 Further support for Townsend’s Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids 19, 16.Google Scholar
Lee, J. H. & Sung, H. J. 2008 Effects of an adverse pressure gradient on a turbulent boundary layer. Intl J. Heat Fluid Flow 29, 568578.Google Scholar
Lee, J. H. & Sung, H. J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.Google Scholar
Lund, T., Wu, X. & Squires, K. 1998 Generation of turbulent inflow data for spatially- developing boundary layer simulations. J. Comput. Phys. 140, 233258.Google Scholar
Maciel, Y., Gungor, A. G. & Simens, M. 2017 Structural differences between small and large momentum-defect turbulent boundary layers. Intl J. Heat Fluid Flow 67 (Part A), 95110.Google Scholar
Maciel, Y., Rossignol, K. S. & Lemay, J. 2006 Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers. AIAA J. 44, 24502464.Google Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers. Phys. Fluids 22, 065103.Google Scholar
Materny, M., Drozdz, A., Drobniak, S. & Elsner, W. 2008 Experimental analysis of turbulent boundary layer under the influence of adverse pressure gradient. Arch. Mech. 60 (6), 449466.Google Scholar
Mohammed-Taifour, A., Schwaab, Q., Pioton, J. & Weiss, J. 2015 A new wind tunnel for the study of pressure-induced separating and reattaching flows. Aeronaut. J. 119 (1211), 91108.Google Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.Google Scholar
Monty, J. P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32 (3), 575585.Google Scholar
Morgan, B., Larsson, J., Kawai, S. & Lele, S. K. 2011 Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49, 582597.Google Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.Google Scholar
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.Google Scholar
Nikuradse, J.1933 Laws of flow in rough pipes (in German). VDI Forsch. 361 (translation in NACA Tech. Rep. 1292, 1950).Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.Google Scholar
Pailhas, F., Touvet, Y. & Aupoix, B. 2008 Effects of Reynolds number and adverse pressure gradient on a turbulent boundary layer developing on a rough surface. J. Turbul. 9, 124.Google Scholar
Patrick, W. 1987 Mean Flowfield Measurements in a Separated and Reattached Flat-Plate Turbulent Boundary Layer. Cambridge University Press.Google Scholar
Perry, A. E. & Fairlie, B. D. 1975 A study of turbulent boundary-layer separation and reattachment. J. Fluid Mech. 69, 657672.Google Scholar
Perry, A. E. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (02), 193211.Google Scholar
Perry, A. E. & Schofield, W. H. 1973 Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16 (12), 20682074.Google Scholar
Piomelli, U., Rouhi, A. & Geurts, B. J. 2015 A grid-independent length scale for large-eddy simulations. J. Fluid Mech. 766, 499527.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Prandtl, L. 1904 Motion of fluids with very little viscosity. In Proceedings of the 3rd International Congress of Mathematicians, pp. 484491. ICM.Google Scholar
Rahgozar, S. & Maciel, Y. 2011 Low- and high-speed structures in the outer region of an adverse-pressure-gradient turbulent boundary layer. Exp. Therm. Fluid Sci. 35 (8), 15751587.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall boundary layers. Appl. Mech. Rev. 44, 125.Google Scholar
Richmond, M. C., Chen, H. C. & Patel, V. C.1986 Equations of laminar and turbulent flows in general curvilinear coordinates. Tech. Rep. 300. IIHR, University of Iowa.Google Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2, 195.Google Scholar
Rouhi, A., Piomelli, U. & Geurts, B. J. 2016 Dynamic subfilter-scale stress model for large-eddy simulations. Phys. Rev. Fluids 1, 126.Google Scholar
Sandborn, V. A. & Kline, S. J. 1961 Flow models in boundary-layer stall inception. Trans. ASME J. Basic Engng 83 (3), 317327.Google Scholar
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.Google Scholar
Scotti, A. 2006 Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids 18 (3), 14.Google Scholar
Shafi, H. S. & Antonia, R. A. 1995 Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids 18, 213215.Google Scholar
Shin, J. H. & Song, S. J. 2014 Pressure gradient effects on smooth- and rough-surface turbulent boundary layers. Part II: adverse pressure gradient. Trans. ASME J. Fluids Engng 137 (1), 11204.Google Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21 (1), 205232.Google Scholar
Simpson, R. L. 1996 Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457521.CrossRefGoogle Scholar
Simpson, R. L. & Chew, Y. T. 1981 The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 553594.Google Scholar
Simpson, R. L. & Stickland, J. H. 1977 Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 79, 553594.Google Scholar
Skare, P. E. & Krogstad, P.-Å. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.Google Scholar
Skote, M. & Henningson, D. S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.Google Scholar
Song, S. & Eaton, J. K. 2002 The effects of wall roughness on the separated flow over a smoothly contoured ramp. Exp. Fluid 22, 3846.Google Scholar
Spalart, P. R. & Coleman, G. N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. (B/Fluids) 16, 169189.Google Scholar
Stratford, B. S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5, 116.Google Scholar
Tay, G. F. K., Kuhn, D. C. S. & Tachie, M. F. 2009 Influence of adverse pressure gradient on rough-wall turbulent flows. Intl J. Heat Fluid Flow 30, 249265.Google Scholar
Tsikata, J. M. & Tachie, M. F. 2013 Adverse pressure gradient turbulent flows over rough walls. Intl J. Heat Fluid Flow 39, 127145.CrossRefGoogle Scholar
Vinuesa, R., Bobke, A., Örlü, R. & Schlatter, P. 2016 On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys. Fluids 28, 113.Google Scholar
Vinuesa, R., Örlü, R. & Schlatter, P. 2017 Characterisation of backflow events over a wing section. J. Turbul. 18 (2), 170185.Google Scholar
Yuan, J. & Piomelli, U. 2014a Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids 26 (1), 015113.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014b Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.Google Scholar
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.Google Scholar