Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T21:14:54.828Z Has data issue: false hasContentIssue false

Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations

Published online by Cambridge University Press:  25 July 2014

R. Vicquelin*
Affiliation:
CNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry, France Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
Y. F. Zhang
Affiliation:
CNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry, France Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
O. Gicquel
Affiliation:
CNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry, France Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
J. Taine
Affiliation:
CNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry, France Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
*
Email address for correspondence: [email protected]

Abstract

The role of radiative energy transfer in turbulent boundary layers is carefully analysed, focusing on the effect on temperature fluctuations and turbulent heat flux. The study is based on direct numerical simulations (DNS) of channel flows with hot and cold walls coupled to a Monte-Carlo method to compute the field of radiative power. In the conditions studied, the structure of the boundary layers is strongly modified by radiation. Temperature fluctuations and turbulent heat flux are reduced, and new radiative terms appear in their respective balance equations. It is shown that they counteract turbulence production terms. These effects are analysed under different conditions of Reynolds number and wall temperature. It is shown that collapsing of wall-scaled profiles is not efficient when radiation is considered. This drawback is corrected by the introduction of a radiation-based scaling. Finally, the significant impact of radiation on turbulent heat transfer is studied in terms of the turbulent Prandtl number. A model for this quantity, based on the new proposed scaling, is developed and validated.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: AVIC Commercial Aircraft Engine Co. Ltd, Shanghai, 200241, PR China.

References

Abe, H., Kawamura, H. & Matsuo, Y. 2004 Surface heat-flux fluctuations in a turbulent channel flow up to ${\mathit{Re}}_{\tau } =1020$ with $\mathit{Pr}=0.025$ and 0.71. Intl J. Heat Fluid Flow 25, 404419.CrossRefGoogle Scholar
Abe, K., Kondoh, T. & Nagano, Y. 1995 A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows–II. Thermal field calculations. Intl J. Heat Mass Transfer 38 (8), 14671481.CrossRefGoogle Scholar
Benarafa, Y., Clonia, O., Ducros, F. & Sagaut, P. 2007 Temperature wall modelling for large-eddy simulation in a heated turbulent plane channel flow. Intl J. Heat Mass Transfer 50 (21–22), 43604370.CrossRefGoogle Scholar
Coelho, P. J. 2004 Detailed numerical simulation of radiative transfer in a nonluminous turbulent jet diffusion flame. Combust. Flame 136 (4), 481492.Google Scholar
Coelho, P. J. 2007 Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog. Energy Combust. Sci. 33 (4), 311383.CrossRefGoogle Scholar
Coelho, P. J. 2012 Turbulence-radiation interaction: from theory to application in numerical simulations. Trans. ASME: J. Heat Transfer 134 (3), 031001.CrossRefGoogle Scholar
Coelho, P. J., Teerling, O. J. & Roekaerts, D. 2003 Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133 (1–2), 7591.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Dailey, L. D., Meng, N. & Pletcher, R. H. 2003 Large eddy simulation of constant heat flux turbulent channel flow with property variations: quasi-developed model and mean flow results. Trans. ASME: J. Heat Transfer 125 (1), 2738.Google Scholar
Damien, P., Jorge, A., Mouna, E. H. & Benedicte, C. 2012 Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust. Flame 159 (4), 16051618.Google Scholar
Debusschere, B. & Rutland, C. J. 2004 Turbulent scalar transport mechanisms in plane channel and couette flows. Intl J. Heat Mass Transfer 47 (8–9), 17711781.Google Scholar
Deshmukh, K. V., Haworth, D. C. & Modest, M. F. 2007 Direct numerical simulation of turbulence–radiation interactions in homogeneous nonpremixed combustion systems. Proc. Combust. Inst. 31 (1), 16411648.Google Scholar
Deshmukh, K. V., Modest, M. F. & Haworth, D. C. 2008 Direct numerical simulation of turbulence–radiation interactions in a statistically one-dimensional nonpremixed system. J. Quant. Spectrosc. Radiat. Transfer 109 (14), 23912400.CrossRefGoogle Scholar
Edwards, D. K. 1976 Molecular Gas Band Radiation 12, 115193; Academic.Google Scholar
Ei Ammouri, F., Soufiani, A. & Taine, J.1994 Effects of temperature and concentrations in turbulent gas flows on combined radiative and conductive wall fluxes. In The Tenth International Heat Transfer Conference, Brighton, UK, Vol. 2.Google Scholar
Ghosh, S., Friedrich, R., Pfitzner, M., Stemmer, C., Cuenot, B. & El Hafi, M. 2011 Effects of radiative heat transfer on the structure of turbulent supersonic channel flow. J. Fluid Mech. 677, 417444.CrossRefGoogle Scholar
Gore, J. P., Jeng, S.-M. & Faeth, G. M. 1987 Spectral and total radiation properties of turbulent carbon monoxide/air diffusion flames. AIAA J. 25, 339345.Google Scholar
Gupta, A., Haworth, D. C. & Modest, M. F. 2013 Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proc. Combust. Inst. 34 (1), 12811288.Google Scholar
Gupta, A., Modest, M. F. & Haworth, D. C. 2009 Large-eddy simulation of turbulence–radiation interactions in a turbulent planar channel flow. Trans. ASME: J. Heat Transfer 131 (6), 061704.CrossRefGoogle Scholar
Haworth, D. C. 2010 Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36 (2), 168259.CrossRefGoogle Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Jeng, S.-M. & Faeth, G. M. 1984 Radiative heat fluxes near turbulent buoyant methane diffusion flames. Trans. ASME: J. Heat Transfer 106, 886888.CrossRefGoogle Scholar
Kader, B. A. 1981 Temperature and concentration profiles in fully turbulent boundary layers. Intl J. Heat Mass Transfer 24, 15411544.Google Scholar
Kasagi, N., Tomita, Y. & Kuroda, A. 1992 Direct numerical simulation of passive scalar field in a turbulent channel flow. Trans. ASME: J. Heat Transfer 114 (3), 598606.Google Scholar
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24 (1), 015105.Google Scholar
Kawamura, H., Abe, H. & Matsuo, Y. 1999 DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Intl J. Heat Fluid Flow 20 (3), 196207.CrossRefGoogle Scholar
Kawamura, H., Ohsaka, K., Abe, H. & Yamamoto, K. 1998 DNS of turbulent heat transfer in channel flow with low to medium–high Prandtl number fluid. Intl J. Heat Fluid Flow 19 (5), 482491.CrossRefGoogle Scholar
Kays, W. M. 1994 Turbulent Prandtl number. Where are we?. Trans. ASME: J. Heat Transfer 116, 284295.CrossRefGoogle Scholar
Kee, R. J., Dixon-lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A.1986 A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties. Tech. Rep. SAND86-8246. Sandia National Laboratories.Google Scholar
Kee, R. J., Rupley, F. M. & Miller, J. A.1989 CHEMKIN-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009B. Sandia National Laboratories.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent Shear Flows 6, pp. 8596. Springer, Berlin.CrossRefGoogle Scholar
Kong, H., Choi, H. & Lee, J. S. 2000 Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12 (10), 25552568.Google Scholar
Larsson, J., Vicquelin, R. & Bermejo-Moreno, I.2011 Large eddy simulations of the hyshot II scramjet. In Center for Turbulence Research Annual Briefs, pp. 63–74. Stanford University.Google Scholar
Lefebvre, H. & Ballal, D. R. 2010 GAS Turbine Combustion, 3rd edn. Taylor and Francis.Google Scholar
Li, G. & Modest, M. F. 2003 Importance of turbulence radiation interactions in turbulent diffusion jet flames. Trans. ASME: J. Heat Transfer 125 (5), 831838.Google Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011a Design of a massively parallel CFD code for complex geometries. C. R. Méc 339 (2–3), 141148.CrossRefGoogle Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011b From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-p.d.f. modeling. Combust. Flame 158 (7), 13401357.Google Scholar
Nagano, Y. & Kim, C. 1988 A 2-equation model for heat-transport in wall turbulent shear flows. Trans. ASME: J. Heat Transfer 110 (3), 583589.Google Scholar
Perrin, M. Y. & Hartmann, J. M. 1989 Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3-mu-m CO2 band. J. Quant. Spectrosc. Radiat. Transfer 42 (4), 311317.Google Scholar
Piomelli, U. 2008 Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44 (6), 437446.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rivière, P. & Soufiani, A. 2012 Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Intl J. Heat Mass Transfer 55 (13–14), 33493358.Google Scholar
Soucasse, L., Riviere, Ph. & Soufiani, A. 2014 Subgrid-scale model for radiative transfer in turbulent participating media. J. Comput. Phys. 257 (A), 442459.CrossRefGoogle Scholar
Soufiani, A. 1991 Temperature turbulence spectrum for high-temperature radiating gases. J. Thermophys. Heat Transfer 5, 489494.Google Scholar
Soufiani, A., Mignon, P. & Taine, J.1990 Radiation effects on turbulent heat transfer in channel flows of infrared active gases. In Proceedings of the 1990 AIAA/ASME Thermophysics and Heat Transfer Conference, pp. 141–148.Google Scholar
Taine, J. & Soufiani, A. 1999 Gas IR Radiative Properties: From Spectroscopic Data to Approximate Models 33, 295414; Elsevier.Google Scholar
Tessé, L., Dupoirieux, F. & Taine, J. 2004 Monte Carlo modeling of radiative transfer in a turbulent sooty flame. Intl J. Heat Mass Transfer 47 (3), 555572.CrossRefGoogle Scholar
Wu, Y., Haworth, D. C., Modest, M. F. & Cuenot, B. 2005 Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems. Proc. Combust. Inst. 30 (1), 639646.Google Scholar
Wu, Y., Modest, M. F. & Haworth, D. C. 2007 A high-order photon Monte Carlo method for radiative transfer in direct numerical simulation. J. Comput. Phys. 223 (2), 898922.CrossRefGoogle Scholar
Zhang, Y. F., Vicquelin, R., Gicquel, O. & Taine, J. 2013a Physical study of radiation effects on the boundary layer structure in a turbulent channel flow. Intl J. Heat Mass Transfer 61, 654666.Google Scholar
Zhang, Y. F., Vicquelin, R., Gicquel, O. & Taine, J. 2013b A wall model for les accounting for radiation effects. Intl J. Heat Mass Transfer 67, 712723.Google Scholar