Published online by Cambridge University Press: 20 April 2006
The limiting process introduced by Stewartson & Cheng (1979) is used to obtain solutions in the limit of vanishing Rossby number for deep rotating flows at arbitrary Reynolds number over cross-stream ridges of finite slope. Examination of inviscid solutions for infinite-depth flow shows strong dependence on obstacle shape of not only the magnitudes but also the positions of disturbances in the far field. In finite-depth flow there is present the Stewartson & Cheng inertial wave wake, which may be expressed as a sum of vertical modes whose amplitudes depend on the obstacle shape but are independent of distance downstream; the smoother the topography and the shallower the flow, the fewer the number of modes required to describe the motion. For abrupt topography the strength of the wake does not, however, decrease monoton- ically with decreasing container depth (or Rossby number). In very deep flows viscosity causes the wake to decay on a length scale of order the Reynolds number times the ridge width. In shallower flows, where only a few modes are present, the decay of the wake is more rapid. For Reynolds numbers and depths of the order of those in the experiments of Hide, Ibbetson & Lighthill (1968)) viscosity causes the disturbance to take on the appearance of a leaning column.