Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T18:30:38.848Z Has data issue: false hasContentIssue false

Effects of initial conditions in decaying turbulence generated by passive grids

Published online by Cambridge University Press:  07 August 2007

P. LAVOIE
Affiliation:
Discipline of Mechanical Engineering, University of Newcastle, NSW 2308, Australia
L. DJENIDI
Affiliation:
Discipline of Mechanical Engineering, University of Newcastle, NSW 2308, Australia
R. A. ANTONIA
Affiliation:
Discipline of Mechanical Engineering, University of Newcastle, NSW 2308, Australia

Abstract

The effects of initial conditions on grid turbulence are investigated for low to moderate Reynolds numbers. Four grid geometries are used to yield variations in initial conditions and a secondary contraction is introduced to improve the isotropy of the turbulence. The hot-wire measurements, believed to be the most detailed to date for this flow, indicate that initial conditions have a persistent impact on the large-scale organization of the flow over the length of the tunnel. The power-law coefficients, determined via an improved method, also depend on the initial conditions. For example, the power-law exponent m is affected by the various levels of large-scale organization and anisotropy generated by the different grids and the shape of the energy spectrum at low wavenumbers. However, the results show that these effects are primarily related to deviations between the turbulence produced in the wind tunnel and true decaying homogenous isotropic turbulence (HIT). Indeed, when isotropy is improved and the intensity of the large-scale periodicity, which is primarily associated with round-rod grids, is decreased, the importance of initial conditions on both the character of the turbulence and m is diminished. However, even in the case where the turbulence is nearly perfectly isotropic, m is not equal to −1, nor does it show an asymptotic trend in x towards this value, as suggested by recent analysis. Furthermore, the evolution of the second- and third-order velocity structure functions satisfies equilibrium similarity only approximately.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonia, R. A. & Orlandi, P. 2004 Similarity of decaying isotropic turbulence with a passive scalar. J. Fluid Mech. 505, 123151.CrossRefGoogle Scholar
Antonia, R. A., Ould-Rouis, M., Anselmet, F. & Zhu, Y. 1997 Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332, 395409.CrossRefGoogle Scholar
Antonia, R. A., Zhou, T. & Zhu, Y. 1998 Three-component vorticity measurements in a turbulent grid flow. J. Fluid Mech. 374, 2957.CrossRefGoogle Scholar
Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.CrossRefGoogle Scholar
Batchelor, G. K. 1947 Kolmogoroff theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 43, 533559.CrossRefGoogle Scholar
Batchelor, G. K. 1948 Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Maths 6, 97116.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. A 190, 534550.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1948 Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A 193, 539558.Google Scholar
Benedict, L. H. & Gould, R. D. 1996 Towards better uncertainty estimates for turbulence statistics. Exps. Fluids 22, 129136.CrossRefGoogle Scholar
Bennett, J. C. & Corrsin, S. 1978 Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction. Phys. Fluids 21, 21292140.CrossRefGoogle Scholar
de Bruyn Kops, S. M. & Riley, J. J. 1998 Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10, 21252127.CrossRefGoogle Scholar
Burattini, P. & Antonia, R. A. 2005 The effect of different X-wire calibration schemes on some turbulence statistics. Exps Fluids 38, 8089.CrossRefGoogle Scholar
Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006 On the power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys. Rev. E 73, 066304.Google ScholarPubMed
Chasnov, J. R. 1993 Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6 (2), 10361051.CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.CrossRefGoogle Scholar
Corrsin, S. 1963 Turbulence: experimental methods. In Handbuch der Physik (ed. Flügge, S. & Truesdell, C. A.), pp. 524589. Springer.Google Scholar
Danaila, L., Anselmet, F. & Antonia, R. A. 2002 An overview of the effect of large-scale inhomogeneities on small-scale turbulence. Phys. Fluids 14 (7), 24752484.CrossRefGoogle Scholar
Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 742.CrossRefGoogle Scholar
Fulachier, L. & Antonia, R. A. 1983 Turbulent Reynolds and Péclet numbers re-defined. Intl Commun. Heat Mass Transfer 10, 435439.CrossRefGoogle Scholar
Gad-el-Hak, M. & Corrsin, S. 1974 Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62, 115143.CrossRefGoogle Scholar
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.CrossRefGoogle Scholar
George, W. K. & Davidson, L. 2004 Role of initial conditions in establishing asymptotic flow behavior. AIAA J. 42, 438446.CrossRefGoogle Scholar
George, W. K., Wang, H., Wollbald, C. & Johansson, T. G. 2001 Homogeneous turbulence and its relation to realizable flows. In 14th Australasian Fluid Mechanics Conference, pp. 4148. Adelaide University.Google Scholar
Huang, M.-J. & Leonard, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys. Fluids 6 (11), 37653775.CrossRefGoogle Scholar
Kang, S. H., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.CrossRefGoogle Scholar
von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.Google Scholar
Kistler, A. L. & Vrebalovich, T. 1966 Grid turbulence at large Reynolds numbers. J. Fluid Mech. 26, 3747.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Korneyev, A. I. & Sedov, L. I. 1976 Theory of isotropic turbulence and its comparison with experimental data. Fluid Mech. Sov. Res. 5 , 3748.Google Scholar
Lavoie, P., Burattini, P., Djenidi, L. & Antonia, R. A. 2005 Effect of initial conditions on decaying grid turbulence at low Rλ. Exps. Fluids 39, 865874.CrossRefGoogle Scholar
Lavoie, P., Djenidi, L. & Antonia, R. A. 2006 Effect of initial conditions on the generation of coherent structures in grid turbulence. In Whither Turbulence Prediction and Control Conference (ed. Choi, H.). Seoul National University.Google Scholar
Ling, S. C. & Wan, C. A. 1972 Decay of isotropic turbulence generated by a mechanically agitated grid. Phys. Fluids 15 (8), 13631369.CrossRefGoogle Scholar
Mansour, N. N. & Wray, A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6 (2), 808814.CrossRefGoogle Scholar
Michelet, S., Antoine, Y., Lemoine, F. & Mahouast, M. 1998 Mesure directe du taux de dissipation de l'énergie cinétique de turbulence par vélocimétrie laser bi-composante: validation dans une turbulence de grille. C. R. Acad. Sci. Paris II b 326, 621626.Google Scholar
Mohamed, M. S. & LaRue, J. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.CrossRefGoogle Scholar
Saffman, P. G. 1968 Lectures on homogeneous turbulence. In Topics in Nonlinear Physics (ed. Zabusky, N.), pp. 485614. Springer.CrossRefGoogle Scholar
Speziale, C. G. & Bernard, P. S. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. The MIT Press.CrossRefGoogle Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.CrossRefGoogle Scholar
Uberoi, M. S. 1956 Effect of wind-tunnel contraction on free-stream turbulence. J. Aero. Sci. 23, 754764.CrossRefGoogle Scholar
Uberoi, M. S. & Wallis, S. 1966 Small axisymmetric contraction of grid turbulence. J. Fluid Mech. 24, 539543.CrossRefGoogle Scholar
Uberoi, M. S. & Wallis, S. 1967 Effect of grid geometry on turbulence decay. Phys. Fluids 10, 12161224.CrossRefGoogle Scholar
Wray, A. 1998 Decaying isotropic turbulence. Tech. Rep. AGARD Advisory Rep.Google Scholar
Zhou, T., Antonia, R. A., Lasserre, J.-J., Coantic, M. & Anselmet, F. 2003 Transverse velocity and temperature derivative measurements in grid turbulence. Exps. Fluids 34, 449459.CrossRefGoogle Scholar
Zhu, Y. & Antonia, R. A. 1995 Effect of wire separation on X-probe measurements in a turbulent flow. J. Fluid Mech. 287, 199223.CrossRefGoogle Scholar
Zhu, Y. & Antonia, R. A. 1996 The spatial resolution of hot-wire arrays for the measurement of small-scale turbulence. Meas. Sci. Technol. 7, 13491359.CrossRefGoogle Scholar