Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T15:59:23.178Z Has data issue: false hasContentIssue false

Effects of heat release on turbulent shear flows. Part 3. Buoyancy effects due to heat release in jets and plumes

Published online by Cambridge University Press:  07 March 2007

FRANCISCO J. DIEZ
Affiliation:
Laboratory for Turbulence & Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, USA
WERNER J. A. DAHM
Affiliation:
Laboratory for Turbulence & Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, USA

Abstract

An integral method is presented for determining effects of buoyancy due to heat release on the properties of reacting jets and plumes. This method avoids the Morton entrainment hypothesis entirely, and thus removes the ad hoc ‘entrainment modelling’ required in most other integral approaches. We develop the integral equation for the local centreline velocity uc(x), which allows modelling in terms of the local flow width δ (x). In both the momentum-dominated jet limit and buoyancy-dominated plume limit, dimensional arguments show δ (x) ≈ x, and experimental data show the proportionality factor cδ to remain constant between these limits. The entrainment modelling required in traditional integral methods is thus replaced by the observed constant cδ value in the present method. In non-reacting buoyant jets, this new integral approach provides an exact solution for uc(x) that shows excellent agreement with experimental data, and gives simple expressions for the virtual origins of jets, plumes and buoyant jets. In the exothermically reacting case, the constant cδ value gives an expression for the buoyancy flux B(x) that allows the integral equation for uc(x) to be solved for arbitrary exit conditions. The resulting uc(x) determines the local mass, momentum and buoyancy fluxes throughout the flow, as well as the centreline mixture fraction ζc(x) and thus the flame length L. The latter provides the proper parameters Ω andΛ that determine buoyancy effects on the flame, and provides power-law scalings in the momentum-dominated and buoyancy-dominated limits. Comparisons with buoyant flame data show excellent agreement over a wide range of conditions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abib, A. H. & Jaluria, Y. 1995 Turbulent penetrative and recirculating flow in a compartment fire. Trans. ASME J. Heat Transfer 117, 927935.Google Scholar
Agrawal, A. & Prasad, A. K. 2004 Evolution of a turbulent jet subjected to volumetric heating. J. Fluid Mech. 511, 95123.Google Scholar
Becker, H. A. & Liang, D. 1978 Visible length of vertical free turbulent diffusion flames. Combust. Flame 32, 115137.CrossRefGoogle Scholar
Becker, H. & Yamazaki, S. 1978 Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames. Combust. Flame 33, 123149.CrossRefGoogle Scholar
Bhat, G. S. & Narasimha, R. 1996 A volumetrically heated jet: large eddy structure and entrainment characteristics. J. Fluid Mech. 325, 303330.CrossRefGoogle Scholar
Blake, T. R. & Coté, J. B. 1999 Mass entrainment, momentum flux, and length of buoyant gas diffusion flames. Combust. Flame 117, 589599.CrossRefGoogle Scholar
Blake, T. R. & McDonald, M. 1995 Similitude and the interpretation of turbulent diffusion flames. Combust. Flame 191, 175184.CrossRefGoogle Scholar
Cetegen, B. M., Zukoski, E. E. & Kubota, T. 1984 Entrainment in the near and far field of fire plumes. Combust. Sci. Technol. 39, 305331.CrossRefGoogle Scholar
Chen, C. J. & Rodi, W. 1980 Vertical Turbulent Buoyant Jets. A Review of Experimental Data. Pergamon.Google Scholar
Dahm, W. J. A. 2005 Effects of heat release on turbulent shear flows. Part 2. Turbulent mixing layers and the equivalence principle. J. Fluid Mech. 540, 119.Google Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25, 12161223.Google Scholar
Delichatsios, M. 1987 Air entrainment into buoyant jet flames and pool fires. Combust. Flame 70, 3346.Google Scholar
Delichatsios, M. 1993 Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships. Combust. Flame 92, 349364.CrossRefGoogle Scholar
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Hemisphere.Google Scholar
Han, D. H. & Mungal, M. G. 2001 Direct measurement of entrainment in reacting/non-reacting turbulent jets. Combust. Flame 124, 370386.CrossRefGoogle Scholar
Hawthorne, W. R., Weddell, D. S. & Hottel, H. C. 1949 Mixing and combustion in turbulent gas jets. Proc. Combust. Inst. 3, 266288.Google Scholar
Heskestad, G. 1981 Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames. Proc. Combust. Inst. 18, 951960.CrossRefGoogle Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377396.CrossRefGoogle Scholar
Johnson, M. R. & Kostiuk, L. W. 2000 Efficiencies of low momentum jet diffusion flames in crosswinds. Combust. Flame 123, 189200.Google Scholar
Johnson, M. R. & Kostiuk, L. W. 2002 A parametric model for the efficiency of a flare in crosswind. Proc. Combust. Inst. 29, 19431950.CrossRefGoogle Scholar
Johnson, M. R., Spangelo, J. L. & Kostiuk, L. W. 2001 A characterization of solution gas flaring in Alberta. J. Air Waste Man. Assoc. 51, 11671177.CrossRefGoogle ScholarPubMed
Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech. 526, 361376.Google Scholar
Karagozian, A. R. 1986 The flame structure and vorticity generated by a chemically-reacting transverse jet. AIAA J. 24, 15021507.CrossRefGoogle Scholar
Kotsovinos, N. E. & List, E. J. 1977 Plane turbulent buoyant jets. Part 1. Integral properties. J. Fluid Mech. 81, 2544.CrossRefGoogle Scholar
Linden, P. F. 2000 Convection in the environment. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffat, H. K. & Worster, M. G.). Cambridge University Press.Google Scholar
List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189212.CrossRefGoogle Scholar
Mercier, G. D. & Jaluria, Y. 1999 Fire-induced flow of smoke and hot gases in open vertical enclosures. Expl Therm. Fluid Sci. 19, 7784.CrossRefGoogle Scholar
Morton, B. R. 1958 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Morton, B. R. & Middleton, J. 1973 Scale diagrams for forced plumes. J. Fluid Mech. 58, 165176.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. 234, 123.Google Scholar
Mungal, M. G. & Hollingsworth, D. K. 1989 Organized motion in a high Reynolds number jet. Phys. Fluids A 1, 16151623.CrossRefGoogle Scholar
Muniz, L. & Mungal, M. G. 2001 Effects of heat release and buoyancy on flow structure and entrainment in turbulent non-premixed flames. Combust. Flame 126, 14021420.Google Scholar
Nguyen, T. T. & Karagozian, A. R. 1992 Liquid fuel jet in subsonic cross-flow. J. Propust. Power 8, 2129.CrossRefGoogle Scholar
Papanicolaou, P. N. & List, E. J. 1988 Investigation of round turbulent buoyant jets. J. Fluid Mech. 195, 341391.CrossRefGoogle Scholar
Peters, N. & Göttgens, J. 1991 Scaling of buoyant turbulent jet diffusion flames. Combust. Flame 85, 206214.CrossRefGoogle Scholar
Steward, F. R. 1970 Prediction of the height of turbulent diffusion buoyant flames. Combust. Sci. Technol. 2, 203212.Google Scholar
Tacina, K. M. & Dahm, W. J. A. 2000 Effects of heat release on turbulent shear flows. Part 1. A general equivalence principle for nonbuoyant flows and its application to turbulent jet flames. J. Fluid Mech. 415, 2344.CrossRefGoogle Scholar
Teixeira, M. A. C. & Miranda, P. M. A. 1997 On the entrainment assumption in Schatzmann's integral plume model. Appl. Sci. Res. 57, 1542.Google Scholar
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption. J. Fluid Mech. 173, 431472.Google Scholar
Wohl, K., Gazley, C. & Kapp, N. 1949 Diffusion flames. Proc. Combust. Inst. 3, 288300.Google Scholar
Zukoski, E. E., Kubota, T. & Cetegen, B. 1981 Entrainment in fire plumes. Fire Safety J. 3, 107121.Google Scholar