Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T22:38:57.040Z Has data issue: false hasContentIssue false

Effects of geometry on resistance in elliptical pipe flows

Published online by Cambridge University Press:  18 March 2020

J. G. Williams
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
B. W. Turney
Affiliation:
Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
D. E. Moulton
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
S. L. Waters*
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
*
Email address for correspondence: [email protected]

Abstract

This paper considers the significant role of cross-sectional geometry on resistance in co-axial pipe flows. We consider an axially flowing viscous fluid in between two long and thin elliptical coaxial cylinders, one inside the other. The outer cylinder is stationary, while the inner cylinder (rod) is free to move. The rod poses a resistance to the axial flow, while the viscous fluid poses a resistance to any motion of the rod. We show that the equations for flow in the axial direction – driven by a prescribed flux – and for flow within the cross-section of the domain – driven by the motion of the rod – decouple in the asymptotic limit of small cylinder aspect ratio into axial Poiseuille flow and transverse Stokes flow, respectively. The objective of this paper is to calculate numerically the axial and cross-sectional resistances and to determine their dependence on cross-sectional geometry – i.e. rod position and the ellipticities of the rod and bounding cylinder. We characterise axial resistance, first for three reduced parameter spaces that have not been fully analysed in the literature: (i) a circle in an ellipse, (ii) an ellipse in a circle and (iii) an ellipse in an ellipse of equal eccentricity and orientation, before extending our geometric parameter space to determine the overall optimal geometry to minimise axial flow resistance for fixed cross-sectional area. Cross-sectional resistance is characterised via coefficients in a Stokes resistance matrix and we highlight the interdependent effects of cross-sectional ellipticity and boundary interactions.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. & Wells, G. N. 2015 The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (100), 923.Google Scholar
Bergman, H. 1981 The Ureter, 2nd edn. Springer.10.1007/978-1-4612-5907-7CrossRefGoogle Scholar
Brenner, H. 1962a Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech. 12 (1), 3548.10.1017/S0022112062000026CrossRefGoogle Scholar
Brenner, H. 1962b Effect of finite boundaries on the Stokes resistance of an arbitray particle. Part 2. Asymmetrical orientations. J. Fluid Mech. 12 (1), 3548.CrossRefGoogle Scholar
Brenner, H. 1962c The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18, 125.Google Scholar
Brenner, H. 1963 The Stokes resistance of an arbitrary particle II (an extension). Chem. Engng Sci. 19 (10), 599629.CrossRefGoogle Scholar
Būtaitė, U. G., Gibson, G. M., Ho, Y.-L. D., Taverne, M., Taylor, J. M. & Phillips, D. B. 2019 Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nat. Commun. 10 (1), 1215.10.1038/s41467-019-08968-7CrossRefGoogle ScholarPubMed
Casey, J.1893 A treatise on the analytical geometry of the point, line, circle, and conic sections. 2nd edn. Printed at the University Press by Ponsonby and Weldrick.Google Scholar
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.CrossRefGoogle Scholar
Cox, S. M. & Finn, M. D. 2007 Two-dimensional Stokes flow driven by elliptical paddles. Phys. Fluids 19, 113102.CrossRefGoogle Scholar
Dvinsky, A. S. & Popel, A. S. 1987 Motion of a rigid cylinder between parallel plate in stokes flow. Part I. Motion in a quiescent fluid and sedimentation. Comput. Fluids 15 (4), 391404.CrossRefGoogle Scholar
Ebrahim, N. H., El-khatib, N. & Awang, M. 2013 Numerical solution of power-law fluid flow through eccentric annular geometry. Am. J. Numer. Anal. 1, 17.Google Scholar
Etayo, F. & Gonzalez-Vega, L. 2006 A new approach to characterizing the relative position of two ellipses depending on one parameter. Comput.-Aided Geom. Des. 23, 324350.CrossRefGoogle Scholar
Finn, M. D. & Cox, S. M. 2001 Stokes flow in a mixer with changing geometry. J. Engng Maths 41, 7599.CrossRefGoogle Scholar
Frazer, R. A. 1926 On the motion of cylinder in a viscous fluid. Phil. Trans. R. Soc. Lond. A.Google Scholar
Hackborn, W. W. 1991 Separation in a two-dimensional Stokes flow inside an elliptic cylinder. J. Engng Maths 25, 1322.CrossRefGoogle Scholar
Heil, M. & Hazel, A. 2006 Oomph-lib: an object-oriented multi-physics finite-element library. In Fluid–Structure Interaction (ed. Schäfer, M. & Bungartz, H.-J.), pp. 1949. Springer.CrossRefGoogle Scholar
Heyda, J. F. 1959 A green’s function solution for the case of laminar incompressible flow between non-concentric circular cylinders. J. Franklin Inst. 267 (1), 2534.CrossRefGoogle Scholar
Hinch, E. J. 1972 Notes on the symmetries of certain material tensors for a particle in Stokes flow. J. Fluid Mech. 54, 423425.CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Jeffrey, D. J. & Onishi, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths 34, 129137.10.1093/qjmam/34.2.129CrossRefGoogle Scholar
Jeffrey, G. B. 1922 The rotation of two circular cylinders in a viscous fluid. Phil. Trans. R. Soc. Lond. A 101, 169174.Google Scholar
Lamb, H. 1916 Hydrodynamics. Cambridge University Press.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.Google Scholar
Lee, S. H. & Leal, L. G. 1986 Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape. J. Fluid Mech. 164, 401427.CrossRefGoogle Scholar
MacDonald, D. A. 1982 Fully developed incompressible flow between non-coaxial circular cylinders. Z. Angew. Math. Phys. 33 (6), 737751.CrossRefGoogle Scholar
Merlen, A. & Frankiewicz, C. 2011 Cylinder rolling on a wall at low Reynolds numbers. J. Fluid Mech. 685, 461494.CrossRefGoogle Scholar
Oratis, A. T., Subasic, J. J., Hernandez, N., Bird, J. C. & Eisner, B. H. 2018 A simple fluid dynamic model of renal pelvis pressures during ureteroscopic kidney stone treatment. PLoS ONE 13 (11), 0208209.Google ScholarPubMed
Piercy, N. A. V., Hooper, M. S. & Winny, H. F. 1933 Viscous flow through pipes with cores. Lond. Edinb. Dublin Phil. Mag. J. Sci. 15 (99), 647676.CrossRefGoogle Scholar
Ranger, K. B. 1994 Research note on the steady Poiseuille flow through pipes with multiple connected cross sections. Phys. Fluids 6, 22242226.CrossRefGoogle Scholar
Ranger, K. B. 1996 Volumetric flux rate enhancement and reduction in conical viscous flows with multiply connected cross sections. Chem. Engng Commun. 148–150, 143160.CrossRefGoogle Scholar
Redberger, P. J. 1962 Axial laminar flow in a circular pipe containing a cixed eccentric core. Can. J. Chem. Engng 40, 148151.CrossRefGoogle Scholar
Saatdjian, E., Midoux, N. & André, J. C. 1994 On the solution of Stokes’ equations between confocal ellipses. Phys. Fluids 6, 38333846.CrossRefGoogle Scholar
Sastry, U. A. 1964 Viscous flow through tubes of doubly connected regions. Indian J. Pure Appl. Phys. 3, 230232.Google Scholar
Seddon, J. R. T. & Mullin, T. 2006 Reverse rotation of a cylinder near a wall. Phys. Fluids 18 (4), 041703.CrossRefGoogle Scholar
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering, pp. 203222.CrossRefGoogle Scholar
Shivakumar, P. N. 1973 Viscous flow in pipes whose cross-sections are doubly connected regions. Appl. Sci. Res. 27, 355365.10.1007/BF00382498CrossRefGoogle Scholar
Shivakumar, P. N. & Chuanxiang, J. 1993 On the Poisson’s equation for doubly connected regions. Can. Appl. Maths Q. 1 (4), 555567.Google Scholar
Slezkin, N. A. 1955 Dynamics of a Viscous Incompressible Fluid. Gostehizdat.Google Scholar
Snyder, W. T. & Goldstein, G. A. 1965 An analysis of fully developed laminar flow in an eccentric annulus. AIChE J. 11, 462467.CrossRefGoogle Scholar
Wannier, G. H. 1950 A contribution to the hydrodynamics of lubrication. Q. Appl. Maths 8, 132.CrossRefGoogle Scholar
Williams, J. G., Turney, B. W., Rauniyar, N. P., Harrah, T. P., Waters, S. L. & Moulton, D. E. 2019a The fluid mechanics of ureteroscope irrigation. J. Endourol. 33 (1), 2834.CrossRefGoogle Scholar
Williams, J. G., Waters, S. L., Moulton, D. E., Rouse, L. & Turney, B. W. 2019b A lumped parameter model for kidney pressure during stone removal. IMA J. Appl. Maths (submitted).Google Scholar
Wilson, W. T. & Preminger, G. M. 1990 Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J. Endourol. 4 (2), 135141.CrossRefGoogle Scholar
Yang, J., Wolgemuth, C. W. & Huber, G. 2013 Force and torque on a cylinder rotating in a narrow gap at low Reynolds number: scaling and lubrication analyses. Phys. Fluids 25, 051901.CrossRefGoogle Scholar